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H I G H L I G H T S
� A learning model and fitness-landscape function; agents choose from N options.

� Its three key factors: social learning, transparency of choice, change through time.
� Our hill-climbing algorithm finds expected optimal decisions as landscape peaks.
� Multiple equilibria at each point on landscape, which is rugged even for N¼3 choices.
� Initial conditions, path dependence underlie optimal behavior among social organisms.
a r t i c l e i n f o

Article history:
Received 2 June 2015
Received in revised form
14 December 2015
Accepted 17 December 2015

Keywords:
Discrete choice
Fitness landscape
Individual learning
Payoffs
Social learning
x.doi.org/10.1016/j.jtbi.2015.12.013
93/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail address: rabentley@uh.edu (R.A. Bentley).

e cite this article as: Caiado, C.C.S., et
doi.org/10.1016/j.jtbi.2015.12.013i
a b s t r a c t

Cultural learning represents a novel problem in that an optimal decision depends not only on intrinsic
utility of the decision/behavior but also on transparency of costs and benefits, the degree of social versus
individual learning, and the relative popularity of each possible choice in a population. In terms of a
fitness-landscape function, this recursive relationship means that multiple equilibria can exist. Here we
use discrete-choice theory to construct a fitness-landscape function for a bi-axial decision-making map
that plots the magnitude of social influence in the learning process against the costs and payoffs of
decisions. Specifically, we use econometric and statistical methods to estimate not only the fitness
function but also movements along the map axes. To search for these equilibria, we employ a hill-
climbing algorithm that leads to the expected values of optimal decisions, which we define as peaks on
the fitness landscape. We illustrate how estimation of a measure of transparency, a measure of social
influence, and the associated fitness landscape can be accomplished using panel data sets.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Imagine a human decision scenario, modern or ancient, such as
a person choosing a cereal at a grocery store or a prehistoric for-
ager deciding which stand of trees to visit to gather hazelnuts. We
tend to think of the former as economics and the latter as human
ecology, but in each case, the decision has many similar options
and depends on (1) the transparency of how good each option is,
(2) the intrinsic utility of each option, and (3) the social utility of
each option.

As researchers, we can observe the proportion of individuals
who choose each option and, based on that information, attempt
to infer these three quantities. Leaving social utility aside for a
al., Fitness landscapes amon
moment, consider just transparency and intrinsic utility. We
expect that if the intrinsic utility of each choice is highly trans-
parent, then the probability distribution of decisions is in good
accord with the fitness landscape, and there will be a single peak
at the highest-utility option. As transparency decreases, the
probability distribution flattens out as the fitness landscape
becomes less visible and utility differences can no longer be dis-
cerned among the different options. At zero visibility, the prob-
ability distribution approaches a uniform distribution, and we
effectively have random choice.

Now add back in social utility. For example, a shopper chooses
the brand that he just saw someone else choose, or perhaps a
forager follows her kinfolk to a particular stand of trees. Then
aggregate those decisions over time and/or people. With social
utility added to the mix, herding effects are possible, and the most
popular option among the aggregated observations need not have
g many options under social influence. J. Theor. Biol. (2016), http:
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the highest utility. Indeed, if social utility is high and intrinsic
transparency low, the respective distributions of choice probability
and intrinsic utility among the options could differ significantly.

This exemplifies the complexity of modeling a fitness landscape
of discrete choice under social influence. Here we build on pre-
vious work by examining cases where there may be multiple
observed distributions of choices for transparency, utility, and
social influence. We sketch an approach to estimation of the fit-
ness landscape in the presence of multiple equilibria. This
approach builds on a two-dimensional map we recently presented
to track decision making as it relates to learning and transparency
(Bentley et al., 2014; Brock et al., 2014).

To place our study in a broader context, we summarize below
some of the recent work that has been done in the area of cultural
learning, given that it forms the foundation of the horizontal axis
of our map. We stress that the econometric studies we borrow
from do not deal with the actual estimation of fitness functions,
nor do they deal with the computation of equilibria or provide a
theory of which equilibria are likely to be observed when actual
estimation is conducted in the presence of multiple equilibria.
Addressing these issues represents our contribution to the for-
mulation of fitness functions and their estimation. We necessarily
use terms such as “transparency,” “social conformity,” and “social
interactions,” which are subject to the imprecision of words in
contrast to the precision of the mathematical concepts for these
terms that we develop later.
2. Social influence: a key element in decision making

When agents are faced with making a decision that involves
multiple options, they can do one of two things. They can either
learn individually, where they attempt to think things through by
themselves, or they can learn socially by using other agents as
sources of information. Within any population, the precise mixture
of individual, or independent (asocial), learners versus social
learners—a dichotomy sometimes referred to as information
“producers” versus information “scroungers” (Mesoudi, 2008;
Rendell et al., 2011)—may be crucial to a group's ability to climb a
rugged fitness landscape (Rogers, 1995; Mesoudi and Whiten,
2008; Rendell et al., 2010; O’Brien and Bentley, 2011; O’Brien et al.,
in press). The reason for this is that whereas social learning
spreads behaviors, it depends on individual learning to generate
them in the first place. The question is, how does an agent inte-
grate social and individual learning (Perreault et al., 2012), and
how do their collective decisions affect fitness? Several studies
have examined this question (e.g., Giraldeau et al., 2002; Kendal et
al., 2009), many building on the work of Rogers (1988), who
proposed that environmental change lowers group fitness when
social learners copy outdated environmental information (Enquist
et al., 2007; Rendell et al., 2011; Rieucau and Giraldeau, 2011). If
the environment does not change, group fitness tends to increase
as social learners copy optimal behaviors. Similarly, natural
selection favors agents who place heavy weight on social cues
when the environment changes slowly or when its state cannot be
well predicted using individual learning (Perreault et al., 2012).

A population will ideally contain an optimally adaptive mix of
the two learning strategies, but there is no assurance that this
optimal mix will occur, as other steady-state mixes might exist.
Numerous studies suggest that about 5% of informed individuals
are enough to guide a social group (e.g., schooling fish) to a des-
tination (Dyer et al., 2009; Herbert-Read et al., 2013; Wolf et al.,
2013; Kurvers et al., 2014). Among that minority, this “pied piper”
effect is augmented by intensity of direction (Couzin et al., 2011),
which we might generalize as the “intensity of choice” (Bentley
et al., 2014), or the accumulation of knowledge (Gomes, 2006).
Please cite this article as: Caiado, C.C.S., et al., Fitness landscapes amon
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In traditional human societies, social learning is usually trans-
parent, as experts in different essential categories of adaptive
knowledge (medicinal plants, hunting, fishing, cultivation) are
well known to the group members (Henrich and Broesch, 2011).
Over generations, well-directed social learning increases collective
knowledge—teachers to students, parents to children, experts to
general communities. As a consequence, the benefits of social
learning are substantial enough for it to have been a key factor in
human evolution (Hruschka, 2010; Hoppitt and Laland, 2013;
Christakis and Fowler, 2014). Small groups can outperform even
the most skilled/knowledgeable individual on complex tasks
(Woolley et al., 2010) and in remembering information (Clément
et al., 2013).

Transparency is not assured, however. Even among social ani-
mals, if misinformation invades the social-learning process, it can
spread (Couzin et al., 2005). As information spreads between, say,
Facebook or Twitter friends (Aral et al., 2009; Bond et al., 2012;
Garcia-Herranz et al., 2014), expertise is not necessarily transpar-
ent to all members of the networks. In cases where expertise is not
transparent, a good strategy might be to copy recent success
(Laland, 2004; Rendell et al., 2010). Schools and flocks may be seen
as “copying the recent”: when flocking agents are copying their
neighbors’ current direction of travel, the information is available
practically instantaneously (Couzin et al., 2005).

An empirical challenge is in characterizing social-learning
strategies from data aggregated at a broader scale than
individual-agent motivations. For example, social-psychology
experiments (e.g., Salganik et al., 2006; Lorenz et al., 2011) show
that providing information about what others are doing often
reduces the diversity of independent judgments within trials but
increases variance between trials, thereby reducing the predict-
ability and accuracy of the aggregated mean of those judgments.

Social influence is best recorded by close observation of each
agent and its interactions through time (Hobaiter et al., 2014). If
the observational data are more aggregated, however, it is difficult
to demonstrate social learning without resorting to strong a priori
assumptions (Shalizi and Thomas, 2011; Thomas, 2013). These
sorts of aggregated datasets are common, but can they be used to
distinguish between genuine social influence and individual dis-
covery? The “three-degrees-of-influence” hypothesis concerning
behaviors that spread within human social networks beyond one’s
immediate friends (Christakis and Fowler, 2013) can also be
explained by simple autocorrelation through individual discovery
combined with homophily—the tendency for individuals with
similar traits to co-associate (Brock and Durlauf, 2001; Aral et al.,
2009; Thomas, 2013). We return to the issue of homophily later.
3. A bi-directional map of decision making

Following our discussion above, we focus on two important
factors, or “dimensions,” in terms of how decisions are made in the
face of multiple options: the magnitude of social influence in the
learning process and the transparency of costs and payoffs to
either social learning or individual learning. These two dimen-
sions, together with how they change over time, are the essence of
discrete-choice theory with social influence (Brock and Durlauf,
2001; Brock et al., 2014). We chose discrete-choice theory as an
exploratory vehicle because of its relationship to other theories of
decision making, both individually and in groups, such as repli-
cator dynamics and Bayesian updating and information theory
(Krakauer, 2011) and statistical mechanics (Durlauf, 1999).

This led us to propose a theoretical framework grounded in a
bi-axial map that extracts, from observational data, the transpar-
ency of decisions and the extent to which a behavior is acquired
socially versus individually (Fig. 1) (Bentley et al., 2011a, 2011b,
g many options under social influence. J. Theor. Biol. (2016), http:
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Fig. 1. A four-quadrant map for understanding different domains of human deci-
sion making, based on whether a decision is made individually or socially (hor-
izontal axis) and the transparency of options and payoffs that inform a decision
(vertical axis) (after Bentley et al., 2014).
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2014; Bentley and O’Brien, 2011, 2015; Brock et al., 2014). The
horizontal axis represents the learning continuum, as we aim to
identify popularity-data signatures that distinguish individually
motivated actions from those driven by social influence. The ver-
tical axis captures how transparent the payoffs of actions and/or
their role models are.

The map has characteristic “quadrants.” Rational choice, for
example, maps in the northwest, and the popularity of variables
tends to be normally (Gaussian) distributed as a result of cost/
benefit constraints underlying them. Well-informed social learn-
ing—for example, using high-ranking individuals or renowned
experts as models (Henrich and Gil-White, 2001; Atkisson et al.,
2012) —lies in the northeast. There, the popularity of variables
tends to follow a log-normal distribution of proportional advan-
tage, as agents judge a behavior by its popularity rather than by its
intrinsic utility.

In the southeast, socially based decisions are made, but payoffs
among different options begin to lack transparency. In the
extreme, agents copy each other in an unbiased manner, not
intentionally copying skill or even popularity. It is as if each person
points to someone else and says, “ I’ll have what she’s having”
(Bentley et al., 2011a). This is not to say that agents behave ran-
domly in the southeast; rather, it says that in the pattern at the
population scale, their biases and individual rationales
balance out.

Random choice lies in the southwest quadrant, where agents
interact minimally and select from among many similar options
that lack transparent payoffs. Referring to our examples above, the
southwest might characterize a model in which specific nuts in a
forager’s basket are shared with each group member. Although
behavioral ecologists probably are not interested in which nuts are
shared, modern market researchers certainly are, in terms of
predicting consumer choices among literally thousands of extre-
mely similar products and information sources (Ehrenberg, 1959;
Evans and Foster, 2011; Sela and Berger, 2012).

To resolve both axes of the map simultaneously requires tra-
ditional and novel time-series analysis of the form and dynamics
of popularity distributions cross-referenced with studies from
individuals and populations (Brock et al., 2014). We have
Please cite this article as: Caiado, C.C.S., et al., Fitness landscapes amon
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parameterized the functions that underlie the map so that we can
estimate paths through it. The vertical axis, which we para-
meterize as bt, represents the transparency of an individual’s
decision and its consequences—costs and payoffs—from absolute
transparency along the northern edge (bt¼1) to complete opa-
queness along the southern edge (bt¼0). The horizontal axis,
measured by parameter Jt, represents the extent to which a deci-
sion is made, from purely individually at the western edge (Jt¼0)
to purely social decision making, or copying, at the eastern edge
(Jt¼1). This allows a parameterization in terms of how probability
of choice k (Pk, as opposed to the null-choice probability, P0)
depends on transparency of choice and social influence. Here the
null choice, zero, is introduced to allow a choice made outside the
set of options 1,2,…,N to serve as a useful baseline option. It is also
useful in tidying up notation when writing log-odds regression
equations in discrete-choice estimation theory.

We follow Anderson et al. (1992, chap. 2, especially app. 2.10.4)
in developing the relatively standard background from discrete-
choice theory that eventually leads to the estimation equation
discussed later (see also Greene (2003) and especially Amemiya
(1985, chap. 9)). At each date t assume there are i¼1,2,…,I persons
selecting from a set {0,1,2,…,N} of choices. An individual, i, is
assumed to face N primary choices of interest plus another choice,
denoted by zero. We assume the payoff of any given choice k to
person i at date t consists of a deterministic term, Ut i; kð Þ, and a
random term, ~εt i; kð Þ. We assume the latter is distributed identi-
cally and independently across people, choices, and dates. We also
add the restriction that the distribution of the random term is a
double-exponential distribution with shape parameter μt (Ander-
son et al., 1992, Eqs. 2.30 and 2A.6). Note that μt is allowed to
change over time. Anderson et al. (1992, eq. 2.30) show that if
there are no social effects, i.e., Jðφ2; yitÞ ¼ 0, the probability that
person i chooses choice k at date t is given by

Ptði; kÞ ¼
1
Zt
eð1=μt ÞUt ði;kÞ; k¼ 0;1;2; :::;N

Zt �
XN
j ¼ 0

eð1=μt ÞUt ði;jÞ; t ¼ 0;1;2; :::; T : ð3:1Þ

We define transparency as bt � 1=μt (this is commonly denoted
intensity of choice in other literature). The variance in the decision
making of person i is proportional to μ2

t (Anderson et al., 1992, Eq.
2A.13). When we use the word “transparency,” we are referring to
bt and will specify a functional form for bt as a function of a
parameter vector and observable characteristics (we do not claim
that this is the most useful definition of “transparency” in all
contexts, but it enables us to make quantitative progress in some
contexts).

The larger the transparency, bt, is, the smaller the variance in
decision making across the alternatives is. In other words, bt¼0
corresponds to the lowest level of transparency—noise in choice is
so large that choice is completely random over the choice set, and
each option is chosen with the same probability. The opposite
polar case is bt¼1, which corresponds to the highest level of
transparency—the relative values of payoffs of each choice are so
high that there is no doubt as to which choice yields the highest
payoff.

One might ask whether the intensity-of-choice measure, bt ,
from discrete-choice theory is a useful measure to an econome-
trician or statistician interested in using observational data on a
set of decision makers to estimate and measure “transparency.”
Discrete-choice theory, or the random utility model, originated
from attempts to model a single decision maker whose state of
mind is randomly changing (Anderson et al., 1992, chap. 2). Ran-
domness can arise from many causes, ranging from incomplete
understanding of the values of the various options, to learning
g many options under social influence. J. Theor. Biol. (2016), http:
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about the values of the various options, to inherent changes in the
values of the options to the decision maker. If none of this ran-
domness were present in the mind of the decision maker, he or
she would simply rank the options and choose the best one. This is
the polar case of infinite intensity of choice, bt¼1.

Another interpretation of the discrete-choice model holds that
uncertainty is a result of the lack of information available to the
modeler (Anderson et al., 1992; Manski, 1977). This could be the
result of nonobservable characteristics, nonobservable variations
in individual utilities, measurement errors, and functional mis-
specifications. Fortunately, “the two approaches lead to the same
choice probabilities” (Anderson et al., 1992, p. 33), which is why
we decided to use the intensity-of-choice measure, bt, as our
measure of “transparency.”

Returning to Eq. (3.1), note that it can be written in the
equivalent log-odds form as

ln
Ptði; kÞ
Ptði;0Þ

� �
¼ 1

μt

� �
Utði; kÞ�Utði;0Þ
� �¼ bt Utði; kÞ�Utði;0Þ

� �
; ð3:2Þ

which is handier for estimation purposes. We now extend this
development to include social effects, which we can include by
replacing Utði; kÞ with

Vtði; kÞ ¼Utði; kÞþ JtPtðkÞ; ð3:3Þ
where PtðkÞ denotes the fraction of the community that chooses
choice k at date t.

Suppose one has a set of characteristics of the Nþ1 different
available choices at dates t¼1,2,…,T, denoted by
xijt ; i¼ 1;2; :::; I; j¼ 0;1;2; :::N; t ¼ 1;2; :::; T
� �

. Suppose also that one
has a data set on individuals, i¼1,2,…,I, that consists of variables
that may impact the variance of decision making at each date,
denoted by zit ; i¼ 1;2; :::; I; t ¼ 1;2; :::; T

� �
. Finally, suppose that one

has a set of variables, yit ; i¼ 1;2; :::; I; t ¼ 1;2; :::; T
� �

, that should
enter the function Jðφ2; yitÞ, which parameterizes the social influ-
ence on choices made by individual i. We also assume for esti-
mation purposes that we have data on the average choice frac-
tions, PtðjÞ; j¼ 0;1;2; :::;N, made by the community. Given these
data, we write the estimating equation from Brock et al. (2014, Eq.
5) that is appropriate for implementation by non-linear least
squares (NLLS) as

ln
Ptði; kÞ
Ptði;0Þ

� �
¼ bðθ; zitÞ φ1ðxikt�xi0tÞþ Jðφ2; yitÞ PtðkÞ�Ptð0Þð Þ� �

; ð3:4Þ

where ðθ;φ1;φ2Þ is a vector of parameters to be estimated and
Utði; kÞ�Utði;0Þ ¼φ1ðxikt�xi0tÞ.

Recall that the characteristic xikt is a scalar here. It is easy to
generalize the treatment of characteristics to the case where they
are vectors.

Here we repeat that our estimating equation is motivated by
the underlying theory from, for example, Eqs. (3.2) and (3.3). Brock
et al. (2014) developed this framework and showed how estima-
tion of the parameter vector θ;φ1;φ2

� 	
can be done in practice by

trying it out on simulated data, but they did not address con-
ceptualizing and estimating a useful specification of fitness func-
tion or how to deal with multiple equilibria. We take up these
issues below, after briefly discussing potential biases we face in
conducting estimation procedures using field data.

Once we have estimates of the parameter vector, θ;φ1;φ2

� 	
—

denote these estimates as θ̂; φ̂1; φ̂2


 �
—we may insert them into

the social-surplus function, S V
� 	

, defined by Anderson et al. (1992,
Eq. 2.37), which we slightly modify in Eq. (3.5)

F p; b; Jð Þ ¼ μ ln
1

Nþ1

� �XN
k ¼ 0

eVk=μ

" #
¼ 1

b

� �
ln

1
Nþ1

� �XN
k ¼ 0

ebVk

" #

ð3:5Þ
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to obtain an estimated fitness function, F̂t . The function can
change over time because although the estimate of the parameter
vector θ̂; φ̂1; φ̂2


 �
does not change, the vector of covariates can. In

this way, we obtain not only an estimate of a path

b θ̂; zit

 �

; J φ̂; yit
� 	n oT

t ¼ 0
but also an estimate, F̂ t , over time for fit-

ness along the estimated path b θ̂; zit

 �

; J φ̂; yit
� 	n oT

t ¼ 0
on the map.

We discuss this in more detail below.
Parameterization of Jt by the function Jt ¼ Jðφ2; yitÞ is for esti-

mation purposes. Regarding the social-learning dimension, J, we
assume that social utility is positively influenced by relative
popularity by letting JZ0 denote the strength of social influence
on decision making. Although for specificity we will emphasize
the case of positive association with relative popularity, note that
in Eq. (3.4) Jðφ2; yitÞ could be negative, which might, for example,
represent anticonformity.

Our goal has been to extract these dimensions from observa-
tional data. Using simulated data, we showed in an earlier paper
(Brock et al., 2014) how functions representing bt and Jt could be
specified in terms of data and a vector of parameters and how
these parameters could be estimated by NLLS. We generated noisy
random values of “real” variables x, y, and z and used NLLS and our
parameterization above to see how well we could recover the
dimensions b (north–south) and J (east–west). In Fig. 2, the red
dots are simulated data, and the blue dots are our estimates. One
can see that the largest discrepancies between model and data lie
in the north–south dimension. This is because the expected value
of the optimal decision, made over N possible choices, needs to be
computed for a given set of parameters of the payoffs to the
decision makers. The problem lies in the multiple equilibria that
appear as social influence becomes strong in an environment
where there are many possible choices.

Here we show how to compute the expected value of the
optimal decision as a function of the basic parameters of the
environment for deciding among N possible choices. Our objective
is to estimate the functions b :ð Þ and J :ð Þ simultaneously (Brock
et al., 2014), but we need to be aware of the difficulties in distin-
guishing between homophily and social causation. As far as we
know, Goldbaum and Mizrach (2008) are the only ones to estimate
the function b :ð Þ as a function of observable covariates. However,
they did not discuss estimation of social influence and potential
biases caused by selection bias and correlated unobservables or
estimation of a fitness function. In fact, estimates of the function J
(.) may be picking up any kind of “social” correlation. More
research is needed on methods to remove such biases in estima-
tions of b :ð Þ; J :ð Þ, as they can affect estimation of the corresponding
fitness function, F̂ t .
4. Optimal decisions among many options under social
influence

Samuelson (1941, 1947) argued in his correspondence principle
that an equilibrium would not be observed in a field setting unless
it were stable with respect to a plausible out-of-equilibrium
adjustment process. This notion, however, has been debated ever
since (e.g., Echenique, 2008), the main point of contention being
what should serve as a plausible out-of-equilibrium adjustment
process. We formulate a process below that seems to make sense.
For ease of presentation, we change the notation slightly by
deleting the person index, i, and the date index, t. We will also
think of the out-of-equilibrium adjustment dynamics as occurring
on a faster time scale than the time scale of change in the obser-
vable variables that drive changes in the intensity of choice and
social influence. Looking ahead, we argue that unstable equilibria
g many options under social influence. J. Theor. Biol. (2016), http:
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Fig. 2. Map comparing nonlinear least-squares estimates (blue dots) against
simulations (red dots) of the model defined by Eq. (3.4) (after Brock et al., 2014,
Fig. 4). The simulated data for variables xi1gt, xi0gt, yigt , and zigt were each inde-
pendently chosen from values normally distributed through time t with mean 10,
with the variance for the payoffs xi1gt and xi0gt set at 0.01 and the variance for yigt
and for zigt set at 1. For individual i in group g at time t, the payoff difference
between options 1 and 0 is represented by xi1gt � xi0gt, the presence of social
influence is measured by yigt, and zigt represents how variable the choices were
through time. As described by Brock et al. (2014), estimating the parameter vector
θ, along with the scalar observable z, determines the transparency of choice, b(.),
and estimating the parameter vector, φ2, specifies the social-influence function, J(.).
Each simulation used 30 time steps, 100 groups, and 200 agents per group and
noise component εi1gt�εi0gt, with mean 0 and σ¼0.1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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with respect to our out-of-equilibrium adjustment process are
unlikely to appear in any observational data set. This is why we
spend time below exploring properties of the adjustment process.
Finally, we note that it is notationally more convenient to drop the
“baseline” choice labeled zero and work with choices labeled
k¼ 1;2; :::;N.

Consider an environment consisting of N possible decisions,
each with payoff Uk; k¼ 1;2; :::;N. As previously, we let bZ0
denote the transparency of the payoff values of the decisions. With
zero transparency (b¼0), decision makers have zero confidence in
their evaluation of payoffs, so they select choice k¼ 1;2; :::;N with
probability 1/N, i.e., completely randomly. With complete trans-
parency, b-1, agents can choose the highest payoff option with
probability one.

In the discrete-choice literature, the utility of different choices
consists of a deterministic utility, Ukt , plus an element of ran-
domness, μt ~εkt , as

~Ukt ¼ Uktþμt ~εkt ; k¼ 1;2; :::;N; t ¼ 1;2; :::; T : ð4:1Þ
Here we have placed subscripts to indicate that when dis-

cussing estimation we allow the utilities as well as the parameter
μt to change over time. In instances where we are simply
explaining the basics of discrete-choice theory, we drop the date
subscript to reduce notation.

The deterministic part of each payoff, Uk, can be ranked as
U14U24…4UN, such that, without loss of generality, when m is
small, most choices will be clustered around choice number 1. As μ
Please cite this article as: Caiado, C.C.S., et al., Fitness landscapes amon
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becomes large, the choice probabilities spread out across the N
choices, approaching a uniform distribution as μ becomes very
large. Because our intensity-of-choice function, b :ð Þ, is inversely
related to μ, the farther north we go on the map, the more tightly
the distribution of choices clusters around the maximum deter-
ministic payoff. This is what motivates our estimation of b :ð Þ as a
function of observable covariates (Brock et al., 2014).

As previously, the deterministic component of utility when
social effects are present is given by

Vk ¼ Ukþ Jpk; k¼ 1;2; :::;N: ð4:2Þ
Actual utility of choice, k, is random and consists of the deter-

ministic component, Vk, and a random component, ~εk, that is
distributed double exponentially with scale parameter μ. The
random component is distributed independently and identically
across choices. This implies that the pairwise difference of the
random components is distributed logistically with zero mean and
variance, σ2 ¼ π2μ2=6 (Anderson et al., 1992, p. 60). Hence, we
write the random utility as

~V k ¼ Vkþ ~εk; k¼ 1;2; :::;N: ð4:3Þ
An important and standard quantity from discrete choice the-

ory (Anderson et al., 1992, pp. 60–61), which we shall use later, is
the expectation of the maximum of the random utilities across
choices,

E maxkε 1;2;:::;Nf g ~V k

n o
¼ S V
� 	¼ μ ln

XN
k ¼ 1

e Vk=μð Þ
" #

¼ 1
b

� �
ln

XN
k ¼ 1

ebVk

" #
;

ð4:4Þ
where b� 1=μ. The quantity S V

� 	
can be thought of as a welfare

measure for an individual facing this particular choice
environment.

Our preliminary goal is to show how b :ð Þ; J :ð Þð Þ in a population of
agents facing N possible choices determines the fitness of the
optimal decision in the population. For such a population, the
maximum payoff for each fixed value of b :ð Þ; J :ð Þð Þ is the expected
value of the optimal decision, i.e., the “fitness function.” This is a
novel problem because the optimal decision depends not only on
intrinsic utility, Uk, but also on transparency, b, and social learning,
J, as well as on the relative popularity, pk, of each of the N possible
choices. This recursive relationship means that multiple equilibria
can exist and that the fitness function may also change over time
as b :ð Þ; J :ð Þð Þ changes.

To keep things simple to start, we fix the values of b and J. We
can think of b; Jð Þ as changing on a slower time scale than the faster
dynamics that give rise to the optimal decision. By assuming that
b; Jð Þ are constant over this faster time scale, we will introduce an
algorithm that computes equilibria as well as points on our fitness
landscape. Even with fixed b and J, we still face the problem of
multiple equilibria, so we start by computing equilibrium solutions
for the extreme values (zero and infinity) of b and J. Then, when
there are multiple equilibria, we argue that certain “natural”
equilibria will be unique for each pair of b and J.

We start with the multinomial logit framework for the general
case of N choices (Brock and Durlauf, 2001), in which the prob-
ability of choice k (from 1 to N) is given by

pk ¼
1PN

i ¼ 1 ebUi þbJpi
ebUk þbJpk ; ð4:5Þ

where k¼ 1;2; :::;N indexes the N different choices. It is a fixed-
point equation because we must find a vector p1; p2; :::; pN

� 	
of

probabilities that simultaneously satisfies both sides of Eq. (4.5) for
k¼ 1;2; :::;N. We have explained how the choice probabilities
given in Eq. (4.5) are derived from the random utilities (Anderson
et al., 1992, Eq. 2.30). Recall that μ is the shape parameter of the
double-exponential distribution function (Anderson et al., 1992,
g many options under social influence. J. Theor. Biol. (2016), http:
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Eq. 2A.6) and that b� 1=μ by definition. We add an extra term to
the usual expected value of the optimal decision, S V

� 	
(Anderson

et al., 1992, Eq. 2.37), in order to build the fitness function that we
want to compute. Our fitness function is given by

F p; b; Jð Þ � E maxiε 1;2;:::;Nf g ~V k

n o
þ1
b
ln

1
N

� �
¼ S V
� 	þ1

b
ln

1
N

� �

¼ 1
b
ln

1
N

� �XN
k ¼ 1

ebUk þbJpk

" #
: ð4:6Þ

As an interim measure of “fitness” in Eq. (4.6), we have taken
the standard discrete-choice measure of welfare, S V

� 	
, and added

the term 1
b ln

1
N

� 	
. Note that this does not change the partial deri-

vatives with respect to Uk or pk for k¼ 1;2; :::;N. Here,
p� p1; :::;pN

� 	
. If we knew how to compute a “natural” choice of

equilibrium vector, call it p� b; Jð Þ, to solve the N Eq. (4.5), we could
define our fitness-landscape function as W b; Jð Þ � F p� b; Jð Þ; b; Jð Þ.
We will discuss what we mean by a “natural” equilibrium
in Section 5.

This modification of adding the constant term 1
b ln

1
N

� 	
to the

formula for the term E maxiε 1;2;:::;Nf g ~V k

n o
in Anderson et al. (1992,

eq. 2.37) turns out to have some useful properties. One is that we
can address the problem of multiple equilibria first by computing
equilibrium solutions for the extreme values b¼0,1 and J¼0,1.
For J¼0, the solution of (4.5) is unique. Further, for J ¼ 0,

b-0; implies; Fðp; b;0Þ- 1
N

� 	XN
k ¼ 1

Uk

b-1; implies; Fðp; b;0Þ- max Uk
� �

: ð4:7Þ

(See Appendix 1 for a short proof of (4.7).) Suppose one plots
the “fitness function” (4.6) on the vertical axis and plots b; Jð Þ on
the horizontal axis of a graphical display of a fitness landscape. We
can see right away from our results (4.7) that if one draws the
peaks for the far west side of the map, where J¼0, one will see the
height of the peak rising as b increases. For J¼0, the height will
rise from the average payoff at the far south, i.e., where b¼0, to
the maximum of the payoffs as one heads north.

For finite J40, writing pk(b) to emphasize the dependence of pk
on the value of b, we have

b-0; implies; Fðp; b; JÞ- 1
N

� 	XN
k ¼ 1

ðUkþ Jpkð0ÞÞ

pkð0Þ ¼ 1
N; k¼ 1;2; :::;N

b-1; implies; Fðp; b;0Þ-max Ukþ Jpkð1Þ� �

pkð1Þ ¼ 1:

ð4:8Þ

Suppose we rank the deterministic payoffs as mentioned above,
with U14U24…4UN, and U1 as the maximum payoff. We have
already seen for the case J¼0 that one can prove that p1-1 as
b-1. However, for 0obo1, the next result shows that multiple
equilibria will appear when J becomes large enough. Somewhat
surprisingly, one can show that when J-1, for any choice k there
is an equilibriumwhere the probability that k is chosen is one. This
is because we are restricting ourselves to settings where the social
utility of a choice correlates positively with its popularity (we
recognize there will be many settings where this is not the case).
As choice k becomes more popular, the social payoff (4.2) rises to
the point where it surpasses the intrinsic part of the payoff and an
agent can simply conform to the majority choice of the community
(McElreath et al., 2008).

To summarize, we see that for J-1, the equilibria, i.e., limiting
fixed points, in (4.5) occur at pk¼1, and all other probabilities zero
Please cite this article as: Caiado, C.C.S., et al., Fitness landscapes amon
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for k¼ 1;2; :::;N: If Uk¼Uj¼0, then for J-1, the equilibria of (4.5)
occur with pk¼½, pj¼½ for every pair ka j. If Uk¼Uj¼Ul¼0, then
for J-1, pk¼1/3, pj¼1/3, pl¼1/3 for every triplet ka ja l, and so
on for all possible mixed-strategy equilibria. Parenthetically, it
might be argued that a discussion of limiting behavior and mul-
tiple equilibria, including mixed-strategy equilibria, is extraneous
to the main goal of estimation of intensity of choice, social influ-
ence, and fitness function, but we believe that it is important to
have a solid understanding of the theory that lies behind the
objects one is trying to estimate.
5. The fitness landscape over multiple equilibria

For large values of the social-learning parameter, J, there can be
a plethora of equilibria. We need to evaluate the fitness function F
(p;b, J) at each of these equilibria in order to complete the fitness
landscape discussed in Section 4. We can start with small values of
N¼2, 3, 4,… and then evaluate F(p;b, J) at each one of these
equilibria in order to show the height of the fitness landscape at
each value of (b, J). We start with the case of N¼2, where we can
compute the equilibria as b40 and JZ0 vary by plotting a graph
and using the constraint p1þp2¼1. For N¼3 we can use
p1þp2þp3¼1 to reduce the problem to solving two equations in
two unknowns, (p1, p2), for each value of the vector (b, J), and in
the general case we solve the equations below, where we have
added a set of differential equations whose steady states are
equilibria:

pk ¼ ebUk þ bJpkPN

j ¼ 1
ebUj þ bJpj

� f k p; b; Jð Þ; pkZ0; k¼ 1;2; :::;N

XN
k ¼ 1

pk ¼ 1

dpk
dt

¼ f k p;b; Jð Þ�pk; k¼ 1;2; :::;N: ð5:1Þ

Given that multiple equilibria may appear for b40 as J-1,
where the fitness function itself may not be well defined or have
infinite limit, which equilibrium should we use for the value of
F p; b; Jð Þ? We face the task of computing all the equilibria for each
b40; JZ0 and possibly picking the one that gives the largest
value of F p� b; Jð Þ; b; Jð Þ. However, we argue below that a better
option is to specify a plausible out-of-equilibrium dynamic process
in the form of a set of differential equations, i.e., a dynamical
system whose steady states are equilibria (solutions of equations
such as (5.1) for the general case of N choices), and to simulate the
dynamical system to identify equilibria that are local attractors for
the dynamical system (5.1). We labeled steady states that satisfy
this local stability property as “natural” equilibrium points. The
motivation for this choice is that an “unnatural” equilibrium is
unlikely to be observed, as was argued by Samuelson (1941, 1947).

We use a Lyapunov function for this exploration. The specific
choice of Lyapunov function is not so important, as long as its
gradient, where zero, yields a solution to Eqs. (4.5) and (5.1). We
propose the following as our Lyapunov function:

H p; b; Jð Þ � F p; b; Jð Þ� J
2

XN
k ¼ 1

p2k : ð5:2Þ

We claim that the partial derivatives of H with respect to pk; k
¼ 1;2; :::;N are all zero on equilibria and that L(p;b, J)� –H(p;b, J)
acts like a Lyapunov function for the dynamical system,

dpk
dt

¼ ∂H
∂pk

¼ J
ebUk þbJpkPN
j ¼ 1 e

bUj þbJpj
�pk

 !
: ð5:3Þ

Note that this system is the same as the one in (5.1) except for
the constant J, which does nothing but change the “speed” of the
g many options under social influence. J. Theor. Biol. (2016), http:
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dynamics, provided that J40, which we assume to be the case
from this point on. This system is essentially the same as the one
in (5.1), except for the units of “time,” and is what we will use as
our out-of-equilibrium adjustment process in order to implement
Samuelson’s (1941, 1947) correspondence principle. We chose
(5.3) because, as we will see, it has very nice mathematical
properties and is, hence, quite easy to analyze.

The dynamical system is a “gradient dynamical system,” that is,
the right side of (5.3) is the gradient of a scalar function H(p;b, J). It
yields a handy “pseudo-Lyapunov” function, L p; b; Jð Þ ¼ �H p; b; Jð Þ.
We call L a “pseudo-Lyapunov” function because it does not satisfy
the usual definiteness conditions for a Lyapunov function; how-
ever, it is still useful for computing equilibria.

Intuitively, the dynamical system (5.3) “climbs” the function
H(p;b, J) because it moves in the direction of the gradient vector
∂H p; b; Jð Þ=∂p. Hence, we expect the system to stop climbing and
come to rest on local maxima of the function, H(p;b, J). We call
these equilibria of (5.1), which are local maxima of H(p;b, J),
“natural equilibria.” Again, Samuelson's correspondence principle
demands that an equilibrium be “natural,” i.e., that it have a
nonzero basin of attraction with respect to an out-of-equilibrium
dynamical adjustment process, which we take to be the system
(5.3). The system will converge to that equilibrium if it starts near
enough (in terms of that equilibrium). The proof is simple, so we
give it here. We must show for L(p;b, J)� –H(p;b, J) that dV=dto0
on solutions of (5.3) and is zero on solutions of (4.5), i.e., is zero on
the set of equilibria. Or, put another way, it is zero on steady-state
solutions of the differential Eq. (5.1). We have from (5.3) and the
definition of L,

dL
dt

¼ �dH
dt

¼ �
XN
k ¼ 1

∂H
∂pk

� �
dpk
dt

� �
¼ �

XN
k ¼ 1

∂H
∂pk

� �2

o0 ð5:4Þ

Hence,

dL
dt

¼ 0 if f
∂H
∂pk

¼ 0; k¼ 1;2; :::;N: ð5:5Þ

Note that the equilibrium that makes the function F p; b; Jð Þ
largest on the set of equilibria, call it p� b; Jð Þ, may not be found by
the process (5.3) because p� b; Jð Þ may not be a steady state of local
attraction for the process (5.3), i.e., it is unstable with respect to
the process (5.3). We exclude such equilibria for the “Samuelso-
nian” reasons given above. Recall Eq. (4.4), where we let p�� b; Jð Þ
denote the equilibrium that gives the largest value of F p; b; Jð Þover
the set of natural equilibria.

The function F p�� b; Jð Þ; b; Jð Þ appears to be the most natural
candidate for a fitness-landscape function. If so, this raises the
question of whether the set of equilibria found by the hill-climbing
algorithm (5.3) and the bottom-seeking version of (5.3), where we
multiply the right side of (5.3) by �1, will contain the equilibrium
that corresponds to p�� b; Jð Þ. Provided that we grid the simplex

p1;…;pN
� 	� �� PN

k ¼ 1 pk ¼ 1g of non-negative probability vectors
finely enough and solve the dynamical system (5.3) from each of
these gridded initial conditions, we can be fairly certain that we
will find all the “natural” equilibria and hence find the equilibrium
we seek, p�� b; Jð Þ.

Some may argue for the use of a process other than (5.3), and
we reiterate that it is only one plausible candidate. Whatever one’s
view is on the usefulness of this particular process for imple-
menting Samuelson’s correspondence principle, any estimation
method of the fitness function,

F p; b; Jð Þ � μ ln
1
N

� �XN
k ¼ 1

eVk=μ

" #
¼ 1

b

� �
ln

1
N

� �XN
k ¼ 1

ebVk

" #
;

which we implemented for estimation purposes above as the
quantity F̂ t using observational data, is likely to be estimated only
Please cite this article as: Caiado, C.C.S., et al., Fitness landscapes amon
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on equilibria that are “stable” with respect to some out-of-
equilibrium adjustment process, assuming the system is in equi-
librium in the first place. The vexing issue of usefully modeling
how particular equilibria are actually approached by a social sys-
tem remains an open problem.
6. Computing multiple equilibria

In summary, we have defined a fitness function F(p;b, J), which
is a modification of the “social surplus” function (Anderson et al.,
1992, Eq. 2.37), which itself is the expected value of the optimal
decision, at a particular b, J coordinate with an optimal division
of popularities, given by the vector of probabilities, pk, for each
choice k¼ 1;2; :::;N among N options. We use a Lyapunov function,
H(p;b, J), to find each natural equilibrium with respect to (5.1), or,
equivalently, (5.3), which is the same system up to speed of con-
vergence. Because there might be multiple peaks that are locally
stable, we initialize our dynamical system over a range of pk(0). In
this way, we are able to find all of the natural equilibria and
evaluate F(p;b, J) at each of these. If p�� b; Jð Þ is the choice prob-
ability vector that gives the largest value of F(p;b, J) over the set of
natural equilibria, the fitness landscape will plot as F p�� b; Jð Þ; b; Jð Þ.
This entire landscape depends on Uk, the vector of utilities for all
the different choices k¼1, 2,…, N, and could potentially be quite
different for a different vector of intrinsic utilities of the N different
choices.

To sum up the relations among these variables, we have

pk ¼
ebUk þbJpkPN
i ¼ 1 ebUi þbJpi

� ebVkPN
i ¼ 1 ebVi

� f k p; b; Jð Þ; k¼ 1;2;…;N; ð6:1Þ

F p; b; Jð Þ ¼ 1
b
ln

1
N

XN
k ¼ 1

ebUk þbJpk

" #
; and ð6:2Þ

H p; b; Jð Þ ¼ F p; b; Jð Þ� J
2

XN
k ¼ 1

p2k

 !
: ð6:3Þ

Note that

XN
k ¼ 1

f k p; b; Jð Þ ¼ 1 ð6:4Þ

for all (p;b, J), such that
PN

k ¼ 1 pk tð Þ ¼ 1 for all dates t. For given
values of b and J, we use computer simulation to follow the gra-
dient given by the Lypunov function. In this simulation, we must
first specify the intrinsic utilities of all N choices by the vector U.
These intrinsic utility values do not change through the simula-
tion. We then choose an initial set of pk values from p1, p2, p3, …
pN, the sum of which is one. In the case of our diagrams for N¼2
and N¼3, respectively, this means

p1 tð Þþp2 tð Þ ¼ 1

p1 tð Þþp2 tð Þþp3 tð Þ ¼ 1 ð6:5Þ
for all dates t for the dynamics (we deleted t in the notation to
avoid confusion).

Each value of N corresponds to a different fitness-landscape
function of (b, J) for each N. We can plug into Eq. (5.3) each pair of
b and J values to obtain a partial derivative for each pk value. The
resulting vector of partial derivatives, (∂H/∂p1, ∂H/∂p2 … ∂H/∂pN),
multiplied by our chosen scalar step size h (we used h¼0.02),
points us one step up the hill of H(p;b, J). We follow this iteratively
until the gradient vector approaches zero, at which point we have
g many options under social influence. J. Theor. Biol. (2016), http:
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found an equilibrium fitness peak at that map coordinate of (b, J).
Fig. 3 shows features of the algorithm for N¼2, b¼5, and J¼1.

The choice of p(0) can matter even for a binary choice, N¼2.
Fig. 4 (after Lahkar and Sandholm, 2008) shows, for N¼2, how the
equilibrium point changes as a function of the initial starting
value, p0, for different pairs of utility values at the same coordinate
of b¼5 and J¼1. Arrows show the direction of flow toward
attractors and away from repellors. For Fig. 4 the utility values of
the two choices were set at 0.5 and 0.4, respectively, and the
attractors in this case are 100% for either choice, such that if p1 is
greater than about 40% at time 0, it goes to the peak at 100% p1;
otherwise it goes to the other peak at 100% p2. The fitness value in
this case, describing the highest overall fitness, is at 100% p1,
which has the higher intrinsic utility.

When we increase to N¼3, the terrain becomes considerably
more rugged, with basins of attraction and areas of repulsion
within a space defined by (p1, p2, p3). Fig. 5 shows these landscapes
for the selected combinations of b and J, with each set at 1, 5, or 10.
Utilities for the three choices were fixed at U1¼0.5, U2¼0.4, and
U3¼0.3. In each plot, the axes show the values of p1 and p2, the
combination of which determines also p3¼1�(p1þp2). Within the
space, arrows point uphill toward the peak defined by the Lypunov
gradient. Empty spaces, or “corridors,” show areas of repulsion,
with all arrows pointing away.

Under these parameters, the space for b¼1 and J¼1 shows one
attractor at approximately (p1, p2, p3)¼(0.38, 0.32, 0.29). From this
situation, if we increase b to 5, keeping J¼1, the one attractor in
the middle becomes three attractors at the corners, near 100% p1,
p2 or p3, respectively, with clear corridors of repulsion dividing
their respective basins of attraction (Fig. 5). Interestingly, the effect
is similar when we increase J to 5, keeping b¼1, or increase both b
and J to 5 (Fig. 5): attractors at 100% for one of the three choices,
with clear boundaries in between. As we increase b and J toward
10 for each, these three areas resolve themselves very clearly
(Fig. 5).

To explore how this transition happens, we can hold b constant
and look at what happens when we vary the east–west coordinate,
J, the strength of social influence. Holding b¼5 constant, as we
increase J, we find some interesting developments in terms of both
the final fitness values (Fig. 6, left) and the hill-climbing gradient
∂H/∂p1 (Fig. 6, right). When social influence is small, Jr0.1, we see
Please cite this article as: Caiado, C.C.S., et al., Fitness landscapes amon
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a fairly sharp transition from positive to negative hill-climbing
gradient ∂H/∂p1 (Fig. 6, lower right). When J is larger, 1r Jr2,
however, we find a step transition in final fitness at lower p1, such
that a small increase in initial p1 yields a substantial increase in
final fitness (Fig. 6, upper left). Along this discontinuity, there is
also a slight slope such that a small change in social transparency,
J, would also abruptly change the fitness, but only very close to the
discontinuity (Fig. 6, upper left).

The sensitivity to initial p vectors shows that in order to
account for potential multiple fitness peaks at each b, J coordinate,
we need to find all equilibria, which could number N or fewer at
each coordinate. Hence, in order to generate a final fitness map in
b, J space for N¼3 (Fig. 7), we need to choose a sufficient range of
different starting vectors, p(0), to cover the space of possible p
vectors and then, for each different p(0), follow the gradient of ∂H/
∂p1, ∂H/∂p2 … ∂H/∂pN to its corresponding fitness peak. After
checking for multiple equilibria and retaining the maximum fit-
ness value for each, this algorithm is repeated for discrete choices
of b and J to fill in the map in pixelated fashion (Fig. 7). The
computation time increases exponentially with the number of
choices, N, which is why Fig. 7 shows the b, J map for a relatively
modest value of N¼3. Keep in mind this map corresponds to a
g many options under social influence. J. Theor. Biol. (2016), http:
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Fig. 5. Plots for N¼3, with utility values U1¼0.5, U2¼0.4 and U3¼0.3. The nine plots in the grid show three different values for both b and J. For plots on the left, the vertical
axis shows final fitness, F; plots on the right show hill-climbing gradient ∂H/∂p1.
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specific assignment of utility values for the three different choices;
different utility values would yield a different b, J map.

As we can see, the space of potential fitness landscapes is
enormous, and further exploration will need to be strategic. In
one exploration we might determine the maximum fitness peak
at each b, J coordinate for higher numbers of choices (N43)
without retaining the results for “sublandscapes” of hill climbing,
like those in Fig. 5, in finding these peaks at every b, J coordinate.
Each landscape depends on the vector of utility values as well, so
we would then plot a landscape in b, J space for N¼3, N¼4 and so
on, for each specified vector of intrinsic utility values, U1, U2, …,
UN. Alternatively, we may also want to focus on the sub-
landscapes that emerge at these higher N values to determine
whether fitness peaks appear at intermediate combinations of
(p1, p2, p3) rather than at the corners close to 100% for one of the
choices (Fig. 5).
7. Conclusion

We applied discrete-choice theory to construct a fitness land-
scape over a two-dimensional surface representing transparency
of choice and social influence, heuristically represented as ortho-
gonal dimensions. In Section 3 we presented an estimating Eq.
(3.4) that can be parameterized and showed how the parameters
θ;φ1;φ2 can be estimated once one has the appropriate data sets,
which we discussed only briefly, given that actual estimation is
beyond the scope of this article. We defined a “transparency”
function, b θ; zit

� 	
, as the inverse of the standard deviation of the

random component of utility. By experimenting with different
specifications of the function b θ; zit

� 	
and splitting the data set

into subperiods of time, one can test whether decision making
becomes more or less precise, i.e., b θ; zit

� 	
increases or decreases

with time. Also, one can test whether certain observable char-
acteristics of individual decision makers are associated with more
or less precision in decision making. Whereas we used linear
specifications of the personal component of the utility difference,
Please cite this article as: Caiado, C.C.S., et al., Fitness landscapes amon
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other specifications can be explored. Finally, because the function
J yit ;φ2

� 	
can be specified, the parameter vector, φ2, can be esti-

mated and used to test hypotheses involving the potential pre-
sence of social-interaction effects. For example, one could test the
null hypothesis of zero social interaction effects, ðJ yit ;φ2

� 	¼ 0Þ.
The decision map we created has a close analogy with field

studies of social animals, and we expect it to interest ethologists as
well. As a case in point, in their study of how wild olive baboons in
Kenya decide how and where to move across the landscape,
Strandburg-Peshkin et al. (2015) use a two-dimensional map that
plots directional agreement on the vertical axis and the number of
initiators of movement on the horizontal axis. We view directional
agreement as analogous to transparency, (b), and number of
initiators as close to degree of social influence, (J). It is a con-
venient coincidence that Strandburg-Peshkin et al. (2015) oriented
their axes in the same way as ours (Fig. 1). In addition, the
observed probability function of a baboon following the move-
ments of one subgroup over another follows a logistic dependence
on the numerical difference between the two subgroups
(Strandburg-Peshkin et al., 2015), which is equivalent to the right
hand side of Eq. (3.4). Analogous to the northeast corner of our
map, Strandburg-Peshkin et al. (2015) model the highest predict-
ability of baboon-group movement in the space of many initiators
and high directional agreement. Interestingly, increasing the
number of initiators (social influence) without increasing direc-
tional agreement (transparency) may actually decrease the pre-
dictability of followers in the baboon study.

Once we identified social influence and transparency of choice
as two key factors in how decision frequencies change through
time among multiple options, we explored the problem of opti-
mizing decision fitness at the population scale. This is a novel
challenge because fitness depends on both the intrinsic utilities of
each choice and the transparency of social learning in terms of
relative popularity of the choice taken. Using a hill-climbing
algorithm, we then explored how this recursive relationship cre-
ates multiple equilibria, which we define as peaks on the fitness
landscape. Among the more surprising results is just how rugged
g many options under social influence. J. Theor. Biol. (2016), http:
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Fig. 6. Image plots for N¼3, with b¼5, where p1 is varied but we set p3¼3p2; that is, p2¼(1�p1)/4 and p3¼3(1�p1)/4. In the plots on the left, the colors show the final
fitness values, with numbers next to “þ” symbols showing the value along selected contours. On the right, colors and contour values indicate the hill-climbing gradient ∂H/
∂p1. In the lower right, where Jr0.1, note the fairly sharp transition from positive to negative hill-climbing gradient ∂H/∂p1. In the upper right, where 1r Jr2, note the step
transition in final fitness at lower p1, such that a small increase in initial p1 would yield a substantial increase in final fitness. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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the landscape becomes as one moves east on the fitness landscape,
as sensitivity to social influence increases. The ruggedness is such
that we struggle, even through computational methods, to define
the fitness landscape for even N¼4 different options. The com-
plexity of human choice among similar options is therefore for-
midable, even in experimental contexts. For example, Salganik
et al. (2006) had subjects choose among N¼48 online music
tracks, the popularity of which was either visible or invisible.

In future work we could incorporate diminishing returns from
growing popularity in the social portion of our fitness function. In
other cases, however, the social fitness we used here may be
Please cite this article as: Caiado, C.C.S., et al., Fitness landscapes amon
//dx.doi.org/10.1016/j.jtbi.2015.12.013i
appropriate, especially where popularity does contribute more or
less directly to overall fitness. In the world of humans, obvious
candidates include financial investments or a communication or
entertainment technology whose utility grows with more users. In
animal culture we might see this be the case, as in chimpanzee
tool culture, with our model implying that social learning among
even a few or several different options could bring about a rugged
fitness landscape and hence multiple regions of different cultural
traditions (e.g., Whiten et al., 1999). For these reasons, we see
considerable value in continuing to explore fitness landscapes of
discrete choice with social influence.
g many options under social influence. J. Theor. Biol. (2016), http:

http://dx.doi.org/10.1016/j.jtbi.2015.12.013
http://dx.doi.org/10.1016/j.jtbi.2015.12.013
http://dx.doi.org/10.1016/j.jtbi.2015.12.013
http://dx.doi.org/10.1016/j.jtbi.2015.12.013


J

b

Final fitness

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Fig. 7. Contour plot of the b, J map showing the maximum fitness for N¼3. To find
these maximum fitness values, the hill-climbing process was followed at b, J
coordinate. At each coordinate, multiple hill-climbing searches were made over a
range of initial probability vectors for the three choices: p1(0), p2(0) and p3(0). The
maximum fitness was then retained at each b, J coordinate.

C.C.S. Caiado et al. / Journal of Theoretical Biology ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 11
Acknowledgments

We thank Andrew Morozov for inviting us to submit this paper
and several anonymous reviewers for their substantial assistance
in helping us clarify and sharpen our discussion. The example that
we use to open the paper came from one of the reviewers.
Appendix A

Consider the expression

F p; b;0ð Þ � E maxkε 1;2;:::;Nf g ~V k

n o
þ1
b
ln

1
N

� �
¼ S V
� 	þ1

b
ln

1
N

� �

¼ 1
b
ln

1
N

XN
k ¼ 1

ebUk

" #
: ðA:1Þ

Note that when b goes to zero in (A.1), one gets the limiting
form 0/0. Apply L’Hospital’s Rule of basic calculus and differentiate
both the numerator and the denominator of (A.1) with respect to b
to obtain

1
N

XN
k ¼ 1

Uke
bUk

( )
1
N

XN
k ¼ 1

ebUk

( )
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1
N

XN
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Uk; as b-0:
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This proves the first line of (4.5). For the second line, suppose
without loss of generality, that maxk Uk

� �¼ U1. Then,

1
b

ln
XN
k ¼ 1

ebUk

 !
¼ 1
b

ln ebU1
XN
k ¼ 1

eb Uk �U1ð Þ
 !

¼U1þ
1
b

ln
XN
k ¼ 1

eb Uk �U1ð Þ
 !

-U1; as b-1 ðA:3Þ
because Uk�U1o0, for all ka1 .This proves the second line
of (4.7).
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