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For many years, intuition and common sense often guided the transference of
patterning ostensibly evident in experimental flintknapping results to
interpretations of the archaeological record, with little emphasis placed on
hypothesis testing, experimental variables, experimental design, or statistical
analysis of data. Today, archaeologists routinely take steps to address these
issues. We build on these modern efforts by reviewing several important
uses of replication experiments: (1) as a means of testing a question, hypoth-
esis, or assumption about certain parameters of stone-tool technology; (2) as
a model, in which information from empirically documented situations is used
to generate predictions; and (3) as a means of validating analytical methods.
This review highlights the important strategic role that stone artifact replica-
tion experiments must continue to play in further developing a scientific
approach to archaeology.
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In 1978, L. Lewis Johnson published a history of flintknapping experimentation that
covered the period 1838–1976 (Johnson 1978). The lengthy article appeared in
Current Anthropology, a journal whose format allows for companion commentaries
by experts in a particular field. Those that accompanied Johnson’s article were any-
thing but complimentary of the then-current state of flintknapping experimentation.
For example, Cahen (1978, 360) noted, “I am afraid that stone-knapping exper-
imentation tends to be an achievement in itself instead of an approach to the
reality of a prehistoric way of life,” and Hay (1978, 361) commented, “general
anthropological interests are completely lost in a multitude of issues and problems
specific to flint knapping itself.” Malik (1978, 364) was even more negative:
“apart from the chronological compilation of the history of lithic experimentation
I fail to see what contribution it makes to the understanding of lithic tool technol-
ogy.” Katz (1978, 362) derisively advised “it’s time to look seriously at our
models instead of admiring them.” Perhaps most damning was the comment by
Müller-Beck (1978, 364) that “nearly all the experiments are empirical ones…
they are – so far – not really controlled experiments”—a point Hayashi (1968)
had made a decade earlier. In other words, no theory guides why one experiment
is performed as opposed to an alternative (see also Dincauze 1978; Knudson
1978; Ranere 1978).
One might have thought that a set of comments that critical, especially appearing

as they did in a leading anthropological journal, would have led to changes in how
flintkapping experiments were designed and carried out (such as those outlined in
Clarke 1968; Dunnell 1971; Eren et al. 2014a; Lett 1997; Lycett and Chauhan
2010; O’Brien 2010; Surovell 2009), but with a few exceptions, archaeologists,
especially those who were expert flintknappers, continued to use the craft to
make authoritative, intuitive arguments about lithic technology. This tendency
was identified in a critique by Thomas (1986:623), who called it “the flintknapper’s
fundamental conceit”:

At the heart of the matter is the vexing conceit that underlies too much of contemporary
lithic technology: some flintknappers behave as if the act of breaking rocks gives them an
inside track to the truth. This attitude is reflected throughout the work of Flenniken
(especially 1984; Flenniken and Raymond 1986), but he is hardly alone.

Thomas was correct: Although he singled out Flenniken’s work for criticism, the
same could have been said about much of the lithic analysis that had been done
up to that time. In many respects, it had grown up as a cottage industry, with prac-
titioners imposing interpretations about prehistoric human behavior on the archae-
ological record based on their own intuition, impressions, and mastery of the
flintknapping craft. Lost was the fact that “commonly accepted” or “proposed by
an experienced knapper” were not the same thing as empirical support within an
explicit hypothesis-testing framework. We accept that hard-won expertise in the
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craft of flintknapping might indeed provide a route to a more informed opinion than
one proffered in the absence of practical experience and awareness. Nevertheless, the
danger of an authoritative stance being used in place of more formal scientific pro-
cedures and rigorous analysis was clearly beginning to raise major concerns at this
time.
By the late 1980s and 1990s the tide began to move away from intuitive analysis

and toward the use of replicated stone tools to test hypotheses about lithic technol-
ogy, to construct models against which archaeological data could be compared, and
to evaluate methods that could be applied to archaeological data (e.g. Barham 1987;
Bradley and Sampson 1986; Davis and Shea 1998; Kuhn 1990; Odell and Cowan
1986; Roux, Bril, and Dietrich 1995; Whittaker 1987). Within a decade or so, a
number of controlled replication experiments appeared (e.g. Clarkson 2002; Shott
et al. 2000; Stout et al. 2000; Whittaker and McCall 2001), signaling the emergence
of replication as an important source of information regarding prehistoric human
behavior.
Our objective here is not to provide encyclopedic coverage of modern stone-tool

replication but rather to examine some of the theoretical and design-related under-
pinnings of modern efforts in terms of replication as test, as model, and as method
validation. Other categorizations of replication experiments exist (e.g. Carr and
Bradbury 2010; Flenniken 1984; Lerner 2013; Nami 2010; Olausson 2010; Shea
2015; Whittaker 1994), but we find these three categories useful for organizing
the growing literature on the subject and highlighting how specific experiments
have contributed to a better understanding of human behavior. The review hopefully
will be of interest to archaeologists—flintkappers as well as non-flintknappers—
who want to construct hypotheses about prehistoric tool manufacture and derive
testable implications from them.

What Is Stone-tool Replication?

Stone-tool replication can be defined as the act of creating or using non-artifactual
flaked-stone specimens for the purpose of investigating archaeological hypotheses,
questions, and methods. In some circumstances it may be useful to differentiate
between stone-tool replication and “flintknapping,” which Reti (2014) defines as
the act of creating flaked-stone tools as art, for personal pleasure (a hobby), or
for business purposes (e.g. eighteenth-century gun flints) (see also Whittaker
2004). While a “replica” is often thought of as an object that matches as closely
as possible to a specific original, a broader definition of the term “replica” may
be more useful for our purposes here, namely a new-made object that possesses attri-
butes relevant to better understanding prehistoric artifacts. Stone-tool replication
falls generally under the subheading of experimental archaeology, although equating
it with “experiment” would be misleading. If we define “experiment” as a form of
scientific study that uses a structured, replicable procedure to test the validity of a
hypothesis (Outram 2008), then it should be clear that stone-tool replication is
but a single part of a process that also includes construction of hypotheses, deri-
vation of test implications, and use of appropriate analytical methods (Lycett and
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Chauhan 2010). Equating stone-tool replication with “experiment” would be like
equating the act of pouring chemicals into a beaker with a chemistry “experiment.”
Stone-tool replication should be considered to be an act or task that is part of the
experimental process, but not that process itself.
Replication experiments form an important link in a chain of archaeological

investigations ranging from studies of the archaeological record itself to mathemat-
ical models of that record (Lycett and Eren 2013a). This chain is parallel to another
that spans a theoretical range of increasing “external validity” toward one end, and
increasing “internal validity” toward the other (Mesoudi 2011; Roe and Just 2009).
In archaeology, the artifactual record might be considered to have high “external
validity”: it is the most direct, empirical (i.e., tangible) evidence that we have of
what actually took place in the past. Conversely, however, the artifactual record
has low “internal validity”: it is inherently biased, incomplete, and allows little
control or randomization of the variables it produces. Further, excavation is unre-
peatable and if one variable/trend/pattern is observed it may be difficult to determine
how “typical” this may have been in other regions or temporal spans where such
evidence is not currently available. In direct contrast to this, experiments might be
considered to have high “internal validity”: they can be repeated, and their par-
ameters and variables might be controlled and manipulated in multiple ways
(Mesoudi 2011, 135; see also discussion in Clarkson, Haslam, and Harris 2015a,
121; Pettigrew et al. 2015). There is, however, an inevitable cost to this high internal
validity: no experiment can “re-run” prehistory with exact precision, and its
relationship to the parameters of direct interest (i.e., the archaeological record)
requires the imposition of specific assumptions and inferences to give it archaeolo-
gical meaning. The archaeological record, despite its problems, is the best and
only direct evidence of the past that we have; experiments are very much an indirect
means of making inferences regarding the past. In this sense, “internal validity” and
“external validity” can be seen to refer to opposing strengths and weaknesses in
reference to the data provided directly by the archaeological record versus exper-
iments (Lycett and Eren 2013a).1

The issue of external versus internal validity leads to the related issue of replica-
tion experiments that involve the use of machines or other devices versus those
that involve human knappers. Machine flaking has provided valuable insights
into some potential causal variables that govern stone-tool fracture mechanics at
the level of individual flakes2 (e.g. Dibble 1997, 1998; Dibble and Pelcin 1995;
Dibble and Rezek 2009; Dibble and Whittaker 1981; Magnani et al. 2014; Pelcin
1997a, 1997b, 1997c, 1998; Rezek et al. 2011), but it would be a mistake to
assume machine-flaking experiments are automatically superior to human ones or
vice versa. Certain variables such as “force of blow” or “angle of blow” can be
measured or observed more easily through machine flaking than through human
flaking, but the design of the machine itself may introduce variables whose effects
on stone fracture relative to what is present in the archaeological record are
unclear. Likewise, “control” may actually remove important interactions between
variables that were operable in the past and so lead to distorted results with
respect to understanding archaeological questions. Thus, experimental control is a
strategy in which any perceived benefit from one degree or kind of control
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necessarily comes with an unavoidable cost. Not acknowledging these points and
consistently advocating for greater and greater experimental control might be con-
sidered a controlled experimenter’s fundamental conceit.
Given these issues, a pragmatic rather than dogmatic approach to the role of

experiments in archaeological inference is needed, especially given that the past
can never be truly “replicated.” Suffice it to say that formal experiments involving
machines on the one hand and human flintknappers on the other are not in opposi-
tion; rather, they occupy different spaces on the spectrum of analytical validity
(Figure 1). Increased linkage between these analytical spaces may arise in future
years given advances in technology and digital imaging. Accurate measurements
of force or angle of blow or other mechanical and biomechanical variables may
soon be recorded in investigations of human flintknappers, while advances in
robotics may allow machine flaking to be conducted in a more human-like
fashion. Until then, however, no machine can knap a replica Clovis point or Leval-
lois core, so there are some questions or topics of inquiry that currently only human
stone-tool replication can investigate. Human stone-tool replication, therefore, has
the capacity to provide an important bridge between highly abstract, mathematical
models or experiments where variables have been controlled in a very artificial
manner, and the archaeological record (Lycett and Eren 2013a).
An analogous point could be made about reductive experiments that use humans

but not stone or other materials with conchoidal fracture (e.g. glass). Schillinger,
Mesoudi, and Lycett (2014a, 2014b, 2015), for example, used standardized
blocks of foam and plasticine as a substitute for stone, and plastic knives as a sub-
stitute for hammerstones and antler billets, to gain insights into such variables as
copying error, additive versus reductive processes, time budgets, and imitative
versus emulative learning mechanisms, which are all relevant in the context of stone-
tool manufacture. Foam and plasticine do not flake or reduce in the same way as
material types possessing conchoidal fracture, yet despite this artificiality, Schillinger

figure 1 Experiments that use human flintknappers versus those that use machines, or
those in which a reductive material other than flaked stone is used, are not opposed, but
merely occupy different spaces on the same analytical spectrum: the former generally
occupy a space with higher external, but lower internal, validity while the latter generally
occupy a space with higher internal, but lower external, validity.
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and colleagues’ experiments contribute to our understanding of flaked stone because
of their ability to directly address parameters of interest in the context of stone tools.
Additionally, the lack of any actual stone-tool replication means that virtually
anyone can participate, and hence large sample sizes, and statistical robustness
with respect to those parameters of interest, are easily achieved. Indeed, such
studies illustrate the potential for artifact-focused experiments to create bridges to
other questions and bodies of literature beyond lithic analyses and archaeologically
specific endeavors alone.

Designing a Replication Experiment

For stone-tool replication to be useful, there first must exist a hypothesis or question
from which can be drawn clear, empirical predictions. Like in any scientific study,
the hypothesis and its predictions determine the variables required for the exper-
iment. Experimental variables include such things as the sample size of participants
or specimens, the measurement and test protocols, whether the experiment is a blind
test (see below), and the chosen quantitative methods and statistical analyses.
Additional experimental variables specific to replication include the reduction strat-
egy, skill-level of the knapper, material type, number and types of knapping tools
available, and perhaps how the knapper is situated (e.g. sitting in a chair versus
on the ground) (Carr and Bradbury 2010). In some instances it might not matter
whether the raw material is a basalt from Africa or a chert from Texas, whether
the knapper is skilled or not, or whether soft- or hard-hammer percussion is used.
The design of an experiment and the variables that go into it must be considered
carefully to understand what matters and what does not in the context of a specific
question, and what could thus validate or confound the results of an experiment.
Whatever variables and test procedures go into an experimental design, they all
must be recorded carefully so that they can be described explicitly and in full
when the time comes to publish. When possible, quantification should be utilized
over qualitative description since this improves precision, comparability, and evalu-
ation of results.
This discussion might sound axiomatic or commonsensical, but we have encoun-

tered archaeologists who think that the mere act of “busting rocks” or using a stone
tool to butcher an animal constitutes publishable research. This may have been the
case at one time in the same way that the act of dissecting a mollusk would have
resulted in a published biology paper 150 years ago (e.g. Owen 1835). These
kinds of exploratory or experiential studies have value and are one possible
means of generating new hypotheses, questions, and ideas3 (McCall and Pelton
2010; Shelley 1990), but as archaeology matures as a science, so too must the
hypotheses posed and the questions asked, which in turn requires greater sophisti-
cation in experimental design, instrumentation, and recorded variables. By
“greater sophistication”we do not necessarily mean increased use of state-of-the-art
laboratory gadgets or computer software alone, but instead progressively better
linkage between a hypothesis and its predictions with an experiment and its
results. This kind of structured research requires organization, planning,
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forethought, and, quite often, pilot experiments. If in order to robustly test the pre-
dictions of a particular hypothesis the highest-resolution 3D scanner available on the
market is needed to record attributes on replicated stone tools, and the knapper must
be in a highly controlled and sterile laboratory, then so be it. But other hypotheses
may actually be better tested in less-controlled experimental conditions in the field
using simple calipers to record, for example, flake length, width, and thickness. It
all depends on the hypothesis being tested. Many hypotheses would benefit from
multiple replications that systematically modify relevant factors and juxtapose the
results (Eren et al. 2011a:2014; Lycett and Eren 2013a; Mesoudi 2011; see also
Carr and Bradbury 2010; Marsh and Ferguson 2010; Pettigrew et al. 2015).

Replication in Hypothesis-driven Archaeology

Recall our earlier brief discussion of three principle arenas in which experimental
stone-tool replication contributes to a hypothesis-driven archaeology: as test, as
model, and as method validation. As we pointed out, our list is not meant to
imply that there are not other ways to categorize replication experiments; the cat-
egories are simply meant to act as archetypes with which to organize the ever-
expanding literature in order to more clearly understand how specific experiments
contribute to an understanding of hominin behavior. In reality, stone-tool replication
experiments can, and often do, fall into two or more of these categories, though at
times they may lean more heavily towards one versus another.

Replication as Test
In this category of experiment, stone-tool replication is used to test a question, a
hypothesis, or an assumption about certain parameters of lithic technology (e.g.
Lycett and Chauhan 2010:5). Results of such tests are not necessarily meant to be
directly compared to archaeological data but instead to serve as a means of formally
assessing and understanding the bounds of what is practically achievable when
making or using stone tools in order to support or falsify potential motivating
factors underlying patterns of tool production, use, morphology, and variability
(Diez-Martin and Eren 2012; Lycett and Eren 2013b). There are several broad
avenues of inquiry that have been investigated by means of experimental tests,
including comparative morphology (Driscoll 2011; Eren and Lycett 2012; Gurtov,
Buchanan, and Eren 2015; Presnyakova et al. 2015; Williams and Andrefsky
2011); process controls (Patten 2002, 2005, 2009); tool use-life (Shott 2002); cogni-
tion and language (Geribas, Mosquera, and Vergès 2010; Mahaney 2014; Morgan
et al. 2015b; Putt, Woods, and Franciscus 2014; Stout et al. 2000; Uomini and
Meyer 2013); biomechanics (Faisal et al. 2010; Key and Lycett 2011; Key and
Dunmore 2015; Nonaka, Bril, and Rein 2010; Rolian, Lieberman, and Zermeno
2011; Williams, Gordon, and Richmond 2012, 2014); and the influence of stone
raw material differences on lithic form (Archer and Braun 2010; Eren et al.
2014b), production technology (Bar-Yosef et al. 2012), tool function (Braun et al.
2009; Galán and Domínguez-Rodrigo 2014; Rodríguez-Rellán, Valcarce, and
Esnaola 2013; Waguespack et al. 2009; Wilkins, Schoville, and Brown 2014),
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knapper skill (Duke and Pargeter 2015; Eren, Bradley, and Sampson 2011b, Eren
et al. 2011c; Stout and Semaw 2006; Winton 2005), use-wear accrual (Lerner
et al. 2007), and impact fractures (Pargeter 2013). Two additional avenues of
inquiry—core-reduction efficiency and functional morphology—are discussed
below.

Core-reduction efficiency
Core-reduction efficiency, measured in terms of total cutting edge produced, number
of flakes produced, or time required for core reduction, has been investigated
through several experimental tests (e.g. bipolar reduction: Diez-Martin et al.
2011, Li 2015, Morgan et al. 2015a; blade versus discoidal reduction: Eren, Green-
span, and Sampson 2008; Levallois reduction: Lycett and Eren 2013b; biface versus
amorphous-core reduction: Prasciunas 2007; biface versus blade reduction: Rasic
and Andrefsky 2001; see also Putt 2015; Tactikos 2003). Efficiency is notoriously
difficult, if not impossible, to quantify from archaeological specimens for two
reasons. First, entire reduction sequences must be present in order to calculate the
original unmodified nodule mass as well as the total number and mass of all
knapped flakes. Second, there is no way of knowing whether the knapper intended
to reduce a nodule as efficiently as possible, or whether the knapper even possessed
the skill to do so (see Duke and Pargeter 2015;Morgan et al. 2015a). Thus, to under-
stand efficiency we turn to replication experiments in which an expert knapper can
be instructed to knap cores as efficiently as possible, which controls for both skill
and intention (Eren et al. 2011c).
The logic underlying experimental comparisons of core-reduction efficiency is

that if strategy A is more efficient than strategy B for producing cutting edges or
flakes, then reduction efficiency is a potential motivating factor for adopting strategy
A over strategy B. If there is archaeological evidence that strategy B was adopted
despite lower efficiency, then another explanation can be sought. Perhaps knappers
did not possess the knowledge or skill to use strategy A, or perhaps strategy B pro-
vided other benefits that in certain contexts were more desirable than reduction effi-
ciency, such as specific flake shapes. If, however, no significant difference is found
through replication, then efficiency should be considered to be a nonfactor.
Core-reduction efficiency can also be assessed within a single reduction strategy in
order to assess the influence of particular variables on efficiency, such as knapper
skill (Eren, Bradley, and Sampson 2011b) or stone raw material (Gurtov and Eren
2014).
A recent example of a replication experiment that tested core-reduction efficiency

is that of Jennings, Pevny, and Dickens (2010), who compared the number of flake
blanks produced and the transport mass of bifacial cores and wedge-type blade cores
typical of Clovis Paleoindians in the western United States versus discoidal cores and
amorphous cores typical of chronologically subsequent Folsom Paleoindians. While
Jennings, Pevny, and Dickens (2010) investigated six replicated biface cores and five
new blade cores, they bolstered their own experimental data with core-efficiency
data from Prasciunas (2007, 10 biface cores and 10 amorphous cores) and Eren,
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Greenspan, and Sampson (2008, seven prismatic-type blade cores and seven discoid
cores). They came to four conclusions:

1. When cores are small, amorphous cores are more efficient, but as cores increase
in size, bifacial, discoidal, and blade cores approach amorphous cores in terms of
production efficiency.

2. Small bifacial cores are less efficient than larger ones in terms of transport mass
because larger ones produce more mass-efficient flakes.

3. Prismatic and wedge-type blade cores are equally efficient at producing flake
blanks, and for both types efficiency decreases with core size.

4. Tentatively, bifacial reduction may be more efficient at producing noncortical
flake blanks than blade reduction from wedge-type cores.

These conclusions allowed Jennings, Pevny, and Dickens (2010) to make several
inferences about intra- and intercultural patterns of Clovis and Folsom tool making.
For example, core size varies between the North American Southern Plains on the
one hand and the Northern Plains and Rocky Mountains on the other. The
former region contains numerous large tabular chert-nodule outcrops, whereas
the latter two regions contain fewer outcrops, making small nodule and cobble
sources more important. Based on their experimental results, Jennings, Pevny, and
Dickens (2010) predicted different core-reduction strategies for Clovis and Folsom
groups, namely the use of any or all reduction strategies in the Southern Plains
and a relatively higher use of amorphous-core and discoidal-core reduction in the
Rocky Mountains and on the Northern Plains. Informal assessment of the archaeo-
logical record suggested that Clovis knappers used biface and blade reduction,
regardless of region, and that amorphous-core reduction was never dominant.
Folsom knappers, however, conformed to the predictions of the experimental
core-efficiency results, using biface cores on the Southern Plains and amorphous
and discoidal cores in the other regions. Taken together, the experimental
core-efficiency results and archaeological patterns inspired new, interesting, and
empirically based interpretations of Paleoindian mobility, settlement, landscape
use, and technological evolution.
Jennings, Pevny, and Dickens (2010) study raises several important points rel-

evant to the process of replication experiments. First, Jennings and colleagues oper-
ated under a clear theoretical framework, with questions that logically preceded,
and inspired, the experiment. This ensured that either a significant or non-significant
result would have been of importance and interest. The experiment had a clear
purpose, and the analysts recorded only those variables—flake-blank counts and
flake mass—needed to address the issue at hand. No time, energy, or space was
wasted on aimless data-mining in the hopes of finding a significant result. Second,
Jennings and colleagues were explicit about such variables as who the knapper
was, tools used, measurements of the original core nodule, how data were generated,
(e.g. which flakes were included in the study), and which statistical tests were used.
They also included a discussion of their experiment’s limitations. Thus, independent
re-testing becomes much more straightforward.
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Jennings, Pevny, and Dickens (2010, 2157) specified the use of copper billets,
which brings up a third point worth emphasizing. Paleoindians obviously did not
use copper billets and industrial grinding stones—a fact that might lead some
lithic analysts to claim that the core-efficiency results are invalid. This stance is
not necessarily justified. In some cases, depending on the question posed, the
employment of an experimental variable, such as a copper billet may indeed invali-
date an experiment’s results, inferences, or conclusions. In other cases, the choice of
experimental variables such as knapping-tool material may have relatively little
bearing on the specific phenomenon or archaeologically relevant variable toward
which the overall experimental design is being strategically directed. Use of a
copper billet could, in this case, be argued to increase Jennings, Pevny, and
Dickens (2010) experiment’s internal validity and consistency in that it controls
for a variable that otherwise might inconsistently influence core efficiency in its
own way if, say, antler or wood is used for blade reduction but a hard hammerstone
is used for discoidal-core reduction. A series of well-controlled, blind stone-tool
replication experiments systematically looking at the influence of copper billets
and pressure tools versus antler, wood, and stone percussors and pressure tools
on core-reduction efficiency, pattern/choice of flake removal, debitage flake mor-
phology, final tool morphology, among other topics, would be extremely valuable.
Once the results of these experiments are in hand, replication experimenters will be
armed with information that will help them better design and interpret their exper-
iments, namely when it would be most beneficial to employ copper or “natural”
tools to best answer a specific question.

Functional morphology
Functional morphology is the study of the relationship between form (size and
shape) and application toward specific tasks. Examples of replication experiments
conducted to better understand the relationship between shape and use include
Collins’ (2008) study of the performance of differently shaped flake edges; Shea,
Davis, and Brown’s (2001) and Sisk and Shea’s (2009) experimental tests of triangu-
lar flakes as arrowheads; studies of projectile point performance by Titmus and
Woods (1986), Odell and Cowan (1986), Friis-Hansen (1990), Cheshier and
Kelly (2006), and Hunzicker (2008); Braun, Pobiner, and Thompson’s (2008)
study of cutmark production, butchery activity, and tool edge attrition; Quinn
et al.’s (2009) examination of the perforation capabilities of Pre-Pottery Neolithic
el-Khiam points; Pétillon et al.’s (2011) study of functional characteristics of Mag-
dalenian composite projectile tips; Eren et al.’s (2013) test of overshot versus over-
face flake thinning effectiveness; Key and Lycett’s (2014; see also Prasciunas
2007) examination of flake size versus cutting efficiency; Key and Lycett’s (2015)
assessment of flake edge angle vs. cutting efficiency; Clarkson, Haslam, and
Harris’ (2015a) experimental trials of retouched, non-retouched, and hafted flake
woodworking; and Lipo et al.’s (2012) and Pettigrew et al.’s (2015) examinations
of projectile point beveling as a spinning and stabilizing mechanism. None of
these studies was concerned primarily with comparing experimental results directly
with archaeological specimens so much as using results to establish functional
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parameters that could help hone archaeological hypotheses and interpretations
about potential functional options or limits of archaeological specimens. Since
archaeologists cannot observe prehistoric hominins using their stone tools, much
less watch hominins push their stone tools to some sort of maximum functional
“ceiling,” and there are ethical issues to consider regarding the modern experimental
use of prehistoric artifacts (Chazan 2013), archaeologists must instead rely on
modern experimental tests utilizing stone-tool replicas to establish boundaries of
functional morphology.
One early example of replication used in a test of functional morphology was that

of Frison (1989), who asked whether replicated Clovis points could penetrate tough,
thick hides like those of modern elephants when delivered by atlatls or thrusting
spears. Frison was testing the basic and widely held assumption that the occasional
association of prehistoric Clovis points and mammoth remains was a result of Clovis
people using the former to hunt the latter. If experimental tests using replicated
Clovis points were found to successfully penetrate elephant hides, the argument
for prehistoric Clovis points as mammoth-hunting implements would remain a
reasonable one. If, on the other hand, replica Clovis points could not penetrate ele-
phant hides, then the prehistoric hunting assumption could be questioned, which
could result in new notions about the association between Clovis points and
mammoth remains, such as that Clovis points were butchering tools. Frison’s
(1989, 783) tests showed that indeed “Clovis projectile points used with either
atlatl and dart or thrusting spear will penetrate elephant hide and inflict lethal
wounds on African elephants of all ages and both sexes.”
Another study of tool effectiveness was Machin, Hosfield, and Mithen’s (2007)

examination of the relationship between symmetry and butchering effectiveness of
Acheulean handaxes: “If a positive relationship exists [i.e., symmetry increases the
effectiveness of a handaxe as a butchery tool], support can be given to those who
argue that handaxes were primarily, or perhaps solely, subsistence tools. If no
such relationship exists, then support will be given to those who argue that social,
sexual, or aesthetic factors may have been important influences on handaxe mor-
phology” (Machin, Hosfield, and Mithen 2007, 883). Effectiveness was measured
in two ways. First, Machin and colleagues recorded the speed of the butchering
event. Second, they assessed the “quality” of the event by asking their two test sub-
jects, a professional game butcher and an archaeologist who studies the Paleolithic,
to score the effectiveness of a used handaxe on several ordinal scales relating to
different measures of quality and tool use. The plan-view and profile-view symmetry
of each handaxe was quantified and then compared to the two effectiveness
measures.
Machin, Hosfield, and Mithen’s (2007) results were not as straightforward as

Frison’s (1989). There was only moderate support for the hypothesis that increasing
plan-view symmetry increases the effectiveness of handaxes as butchering tools.
Some tests were significant only for test butcher number 1, other tests were signifi-
cant only for test butcher number 2, and many of the relationships between sym-
metry and butchery effectiveness, while significant, were weak. There was no
support for the hypothesis that profile-view symmetry increased butchering effec-
tiveness. Machin, Hosfield, and Mithen (2007, 892) concluded that their null
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hypothesis was better supported, namely that “factors other than functional con-
siderations for animal butchery are playing a key role in the decisions by hominin
stone knappers to impose high degrees of symmetry on some of their handaxes.”
However, they could not entirely rule out the butchering benefits of symmetry,
which is interesting in and of itself.
We point out that as per the definition of our “replication experiment as test” cat-

egory, neither Frison (1989) nor Machin, Hosfield, andMithen (2007) directly com-
pared their results to archaeological data, but important inferences regarding
technology, technological evolution, and prehistoric behavior were made nonethe-
less. These inferences were not about tools from one Clovis site or one style of
handaxe but instead were intended to be broader in scope and potentially applicable
to interpretations of the Clovis period or the Lower Paleolithic period as a whole.
That said, some questions are more specific and limited in applicability and thus
require replication tests incorporating particular experimental variables. For
example, Nigra and Arnold (2013) were interested in the production of beads
from the shells of Olivella biplicata during the second millennium CE by
Chumash hunter–gatherers on the California Channel Islands. They hypothesized
that Chumash bead-production specialists chose Santa Cruz Island chert because
“it demonstrated superior material properties for shell drilling” (Nigra and
Arnold 2013, 3648). To test this hypothesis, Nigra and Arnold devised a series of
experimental trials to compare locally available Santa Cruz Island chert against
three alternative lithic materials (fused shale, obsidian, and Vandenberg/Monterey
chert), all of which are available at prominent outcrops in southern California.
They replicated the region’s Middle-period-style Chumash flake drills, hafted the
experimental drills in traditional fashion, and then tested them on Olivella shells
in controlled laboratory conditions, examining two attributes: (1) the resilience of
each raw material measured by the reduction in length of the drill after three
minutes of drilling at three pounds of pressure and (2) the effectiveness of each
raw material determined by whether a drill successfully perforated a bead blank.
Analysis showed that Santa Cruz Island chert was both more resilient and effective
than any of the other material types, lending strong inferential support for prehisto-
ric preference for it.

Replication as model
Clarke (1972, 1) observed that “models are pieces of machinery that relate obser-
vations to theoretical ideas,” although as Lycett and Chauhan (2010, 11–12)
point out, the term “model” is frequently misused, and the purpose of a model is fre-
quently misunderstood:

Models are not by themselves statements about reality; rather they are formalized means
of laying down explicit parameters in order that we can ask how much does reality
match this pattern? Sometimes it will match the pattern with high degrees of fit; on
other occasions, it will not match the data very well at all. Either way, we have made
a manifest advance in our knowledge, being able to rule out or confirm the role of
specific parameters and their strength of influence over a set of known variables.
(emphasis in original)

114 METIN I. EREN ET AL.

D
ow

nl
oa

de
d 

by
 [T

ex
as

 A
&

M
 U

ni
ve

rs
ity

-S
an

 A
nt

on
io

] a
t 1

5:
34

 1
4 

A
ug

us
t 2

01
7 



Of the three types of models that Lycett and Chauhan (2010) describe, their “ana-
logue model” is the most appropriate for our purposes here: “analogue models
explicitly use information from better known or empirically documented situations
(e.g. experiment or ethnography) to generate predictions. It is this sense of analogy
between one set of empirical phenomena and another from which this subset of
models takes its name.” (p. 10)
Using stone-tool-replication experiments to help identify specific prehistoric

reduction sequences and possible production behaviors has long been a staple of
lithic analysis4 (Akerman 2007; Aubry et al. 2008; Bradley and Sampson 1986;
Clarkson, Shipton, and Weisler 2015b; Driscoll and García-Rojas 2014; Eren and
Bradley 2009; Reti 2014; Schindler and Koch 2012; Shipton, Petraglia, and
Paddayya 2009; Shott et al. 2007; Sollberger and Patternson 1976; Stafford 2003;
Stout et al. 2014; Tryon, McBrearty, and Texier 2005; Wenban-Smith 1989).
Although many of these analog models for production behaviors, both past and
present, have relied on simple visual comparisons, increasingly sophisticated quan-
titative analyses (e.g. morphometrics) are providing an independent means for ensur-
ing that comparisons between replicated and archaeological specimens are objective
and robust. However, we cannot determine how challenging or difficult producing a
stone-tool type or using a particular production technique would have been to a pre-
historic knapper, who, unlike modern knappers, may have spent his or her life
making and using stone tools, may have started learning at a much different
(likely younger) age, and may have been surrounded by teachers or peers who
had already learned the “trick” necessary to achieve production success (Eren
et al. 2014a). Thus, caution and restraint should be exercised when it comes to
specific proposals about a prehistoric person’s stone-tool production learning trajec-
tory, perception, specialization, or skill mastery.
The investigation of natural versus functional lithic fracture patterns, taphonomy,

and use-wear studies has traditionally made use of “crash dummies”—replicates
that are subjected to various processes such as butchering, projectile-shooting,
and trampling and then compared to archaeological specimens (Andrefsky 2013;
Bello, Parfitt, and Stringer 2009; Claud et al. 2015; Driscoll et al. 2015; Eren
et al. 2010a, 2011a; Iovita et al. 2014; Jennings 2011; de Juana, Galán, and
Domínguez-Rodrigo 2010; Key 2013; Lemorini et al. 2014; Lombard and Pargeter
2008; MacDonald 2014; Miller 2015; Pargeter and Bradfield 2012; Pevny 2012;
Price 2012; Smallwood 2013; Tallavaara et al. 2010; Temple and Lee Sappington
2013; Weitzel et al. 2014a, 2014b). Heat treatment or damage has also been exam-
ined through stone-tool replication as model (Brown et al. 2009; Schmidt et al.
2013), although there are also examples of heat-treatment studies conducted
through replication as test, in which researchers were more concerned with under-
standing the general process and parameters of the effect of heat on stone (Mercieca
and Hiscock 2008; Schmidt et al. 2012, 2013).
One recent example of an experimental model is that of Wilkins et al. (2012), who

hypothesized that diagnostic impact fractures on triangular stone flakes indicated
that spear points were being produced at Kathu Pan 1, South Africa, 500,000
years ago. To test this hypothesis, experimentally replicated spearpoints made
from the same banded ironstone as the archaeological specimens were thrust into
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animal carcasses with a calibrated crossbow “to simulate a thrusting spear and keep
force constant” (Wilkins et al. 2012, 943). These experimental specimens sub-
sequently served as a model against which the archaeological triangular flakes
could be compared, which in turn were used to argue for support of the hypothesis.
Although the results have been debated (McPherron et al. 2014; Rots and Plisson
2014; Wilkins et al. 2015), Wilkins et al.’s (2012) study illustrates the successful
use of replication as model—that is, as a formalized means of establishing explicit
parameters in order to compare archaeological data against modern, replicable
data (Lycett and Chauhan 2010).
Wilkins et al. (2012) is one of several studies relating the identification of hunting

function of stone artifacts to macrofractures. Over the past three decades at least 28
experimental projects on six continents have demonstrated, often independently,
that a distinct subset of macrofractures, known as impact fractures or “diagnostic”
impact fractures, form as a result of stone and bone tools being projected into animal
carcasses (Table 1). This work has made model-hunting macrofactures one of the
most investigated and replicated experimental stone-tool subjects. Most of these
projects have further demonstrated that these fracture types are robust models for
fractures that can be found on archaeological specimens (e.g. Barton & Bergman
1982; Fischer et al. 1984; Lombard and Pargeter 2008). Yet, identification of
hunting macrofractures via experimental models is not without flaws. Notable
issues include the use of a diverse range of nomenclature to refer to impact fractures;
a lack of clear and accurate published images showing fracture initiations and ter-
minations; and a frequent lack of macrofracture quantification. Most recently,
research teams working independently of one another in South Africa (e.g. Pargeter
2011; Pargeter and Bradfield 2012) and Japan (e.g. Sano 2009) have reached con-
vergent conclusions regarding the frequencies (c. < 5%) of impact fractures likely
to form under non-hunting conditions (Table 1). These results have made the pub-
lishing of impact fracture frequencies a requisite.
Experimentally derived replication models are not always in the form of replicated

specimens being compared to archaeological specimens. For example, Eren and
Andrews (2013) were interested in whether Clovis foragers in the North American
Great Lakes region transported large biface cores and produced stone flakes on the
go or instead knapped their flakes at a stone source before setting off on treks. Flake
thickness is minimally affected by retouch and resharpening (Patten 2005; Shott and
Weedman 2007; Surovell 2009), so Eren and Andrews reasoned that if they could
understand how flake thickness is patterned over the course of biface-core
reduction, it would be possible to construct predictions (a model) to infer from a
sample of sites whether or not bifaces were being transported as mobile cores.
To understand the patterning of blank thickness, they replicated Clovis biface

cores (Figure 2) and plotted the sequence of flake removal against flake thickness.
They found two trends: (1) a significant negative linear relationship between the
sequence of flake removal and flake thickness (Figure 3a) and (2) a significant nega-
tive linear relationship between sequence of flake removal and variation in flake
thickness (Figure 3b). They then predicted that if foragers carried their cores with
them, core reduction should progressively advance to later stages of knapping the
farther they traveled away from a stone source. Thus in a group of sites possessing
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TABLE 1

OVERVIEW OF EXPERIMENTAL STUDIES INVESTIGATING IMPACT FRACTURE FORMATION ON STONE TOOLS
USED AS HUNTING WEAPONS AND DURING TAPHONOMIC AND TOOL PRODUCTION PROCESSES.

Author Year Lab/actualistic Test type

Barton and Bergman 1982 Actualistic Arrows

Huckell 1982 Actualistic Spears

Moss and Newcomer 1982 Actualistic Arrows

Bergman and Newcomer 1983 Actualistic Arrows

Fischer et al. 1984 Actualistic Spears, arrows

Odell and Cowan 1986 Actualistic Spears, arrows

Albarello 1986 Actualistic Arrows

Titmus and Woods 1986 Actualistic Darts

Geneste and Plisson 1990 Actualistic Spears, arrows

Caspar and De Bie 1996 Actualistic Arrows

Soriano 1998 Actualistic Arrows

Plisson and Beyries 1998 Actualistic Spears

Kelterborn 1999 Actualistic Arrows

Crombé et al. 2001 Actualistic Arrows

Shea et al. 2002 Actualistic Spears

Lombard et al. 2004 Actualistic Spears

O’Farrell 2004 Actualistic Spears

Lombard and Pargeter 2008 Lab/actualistic Spears

Yaroshevich et al. 2010 Actualistic Arrows

Flegenheimer, Martínez, and Colombo 2010 Actualistic Spears

Brindley 2011 Actualistic Spears

Petillon et al. 2011 Actualistic Spears

Wilkins et al. 2012 Actualistic Spears

Iovita et al. 2014 Lab Spears

Weitzel et al. 2014 Actualistic Spears, darts

Sano and Oba 2014 Lab/actualistic Arrows, spears

Taphonomic/production related impact fracture experiments

Fisher et al. 1984 Actualistic Knapping, trampling

O’Farrell 2004 Actualistic Knapping, trampling

Sano 2009 Actualistic Trampling

Weitzel 2010 Actualistic Knapping, trampling

Pargeter 2011 Actualistic Trampling

Pargeter and Bradfield 2012 Actualistic Trampling, knapping

Pargeter 2013 Actualistic Trampling, stone rolling, dropping

Note that this table covers only studies with published impact fracture descriptions or frequencies.
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various site-to-source distances, there should be negative relationships between dis-
tance and unifacial-tool (flake) thickness (Figure 3c) and between distance and vari-
ation (standard deviation) in thickness (Figure 3d). When archaeological data were
compared against the analog model (Figure 3e, f), they showed the opposite pattern,
and Eren and Andrews (2013) rejected the model and concluded that Clovis foragers
in the North American Great Lakes did not carry biface cores with them.

Replication as method validation
In this category of replication, experimentally knapped specimens are used as
control groups to assess quantitative methods that will ultimately be used on archae-
ological specimens. After some early work (Kuhn 1990), this use of replication has
increased substantially over the last 15 years. One avenue of inquiry—creating

figure 2 A replica Clovis biface core and flakes knapped by M. I. Eren. The top row of flakes
are from earlier in the reduction sequence and, as a group, are thicker and more variable in
their thicknesses. The bottom row of flakes are from later in the reduction sequence and, as
a group, are thinner and less variable in their thicknesses. These trends in the experimental
replication were used to construct a mathematical model that could be directly compared
against data from the archaeological record (see text and Figure 3).
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methods for estimating the amount or effects of mass removed from a flake or tool
by retouch or resharpening—has received extensive coverage in the literature
(Andrefsky 2006; Bradbury, Carr, and Randall Cooper 2009; Braun et al. 2010;
Clarkson 2002; Davis and Shea 1998; Eren et al. 2005; Eren and Prendergast

figure 3 From experimental replication of Clovis biface cores (see Figure 2), Eren and
Andrews (2013) uncovered two simple, but important, trends (a, b). These two trends
allowed them to create a model (c, d) to test against the archaeological record (e, f)
whether Clovis Paleoindians carried their biface cores.
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2008; Eren and Sampson 2009; Hiscock and Clarkson 2005; Horowitz and McCall
2013; Patten 2005; Shott et al. 2000, 2007; Marwick 2008; Morales, Lorenzo, and
Vergès 2015; Wilson and Andrefsky 2008), but with some exceptions, it has not
been intensive. Rather, researchers have focused on using an experiment for the
purpose of proposing new or newly revamped methods rather than for thoroughly
vetting methods and validating that they actually work for their asserted purpose
(Shott et al. 2007:205–206).
For other methodological topics, such as those dealing with cortex (Dibble et al.

2005), edge length (Mackay 2008), core reduction, and flake-scar density (Clarkson
2013; Clarkson, Shipton, and Weisler 2015c), even fewer experimental validations
have been conducted. To be clear, the responsibility of method validation is disci-
pline wide and falls to anyone interested in potentially applying a method.
Further, not all methods require a great deal of experimentation before researchers
can confidently use them. However, a major problem arises when either the original
authors of a method, or other researchers who use said method, are not patient
enough to conduct, or wait for, the necessary sets of experiments to robustly validate
a method that may very well need scrutiny. This may be especially the case where a
wide array of variables present in the archaeological record may have a direct
bearing on the sensitivity and accuracy of the method. Some methods may require
continuous and alternating experimentation and application in a cyclical fashion,
especially when applied to new or different kinds of archaeological data (Andrefsky
2007; Bradbury and Carr 2009, 2795).
Experimentally replicated stone specimens can serve as useful elements for estab-

lishing or better understanding optimal or satisfactory protocols for methods such as
lithic refitting. For example, Laughlin and Kelly (2010) conducted an experiment
that examined the effects of experience/aptitude, type of reduction (biface versus
core), and flake-size cut-offs on different rates of success in refitting. Using pro-
duction debitage from replicated bifaces and cores of Wyoming Green River
chert, Laughlin and Kelly recruited 13 people to refit as many flakes as possible
within two hours. The results confirmed that all three variables played a significant
role in refitting success, which in turn allowed Laughlin and Kelly to make several
recommendations about productive ways of conducting a refitting study. Perhaps
even more valuable was the presentation of cumulative refit curves that allow refit-
ters to figure out when they have reached a point of diminishing returns in terms of
number of successful refits from an archaeological assemblage.

Future challenges

Archaeologists who use replication experiments face several challenges (Kelly 1994).
Researchers must always be wary of the “flintknapper’s fundamental conceit”
(Thomas 1986). There is an inherent danger that archaeological flintknappers
might exploit their intuitive knowledge of stone-tool replication as an authoritative
trump card to overrule colleagues who are not flintknappers — or as a tactic for
influencing the public into believing that because they understand how to make
stone tools, they automatically understand prehistoric forager behavior, evolution,
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adaptation, dispersal, and culture as well. Alternatively, and perhaps in reaction to
this latter behavior, there are archaeologists who dismiss the usefulness of any stone-
tool replication experiments — this second attitude is unreasonable as well. While
opposed, both of these viewpoints stem from a poor articulation with the principle
of uniformitarianism. The first “intuitive” view exaggerates the principle of unifor-
mitarianism to such an extent that a scientific framework no longer becomes necess-
ary to test hypotheses, the knapper simply “knows” the past because he or she is
“reproducing it.” The second “reactionary” view ignores the fact that stone
breaks the same way today as it did in the past and possesses the same physical prop-
erties as it did in the past (sharp cutting edge, durability, morphology, and so on),
readily facilitating some level of uniformitarian link that is exploitable scientifically.
That is, if one accepts that rocks in the past fractured similarly to rocks in the
present, then it should go without saying that particular hypotheses and predictions
about stone-tool efficiency, morphology, function, and other topics reviewed above,
are of course validly examined via stone-tool replication experiments conducted
within a scientific framework of test, model, or method validation.
Another challenge faced by archaeologists who use replication experiments is that

some experimental protocols, which are standard in other disciplines, have yet to be
widely applied in tool-replication experiments, much less scrutinized from the stand-
point of when to use them. Take, for example, blind testing, which is not always
necessary for hypothesis testing. Whether it is applied or not depends on the ques-
tion being asked, and in some cases a question might benefit from tests employing
both nonblind and blind trials. In nonblind trials, the potential for knapper bias,
unconscious though it may be, is always present. Because of this, nonblind replica-
tion experiments should be viewed more along the lines of experimental computer or
mathematical simulations, in which a programmer chooses which variables to
include. To be sure, knapper (and programmer) bias in nonblind experiments can
be minimized, curbed, or identified through the use of explicit, replicable instruc-
tions, such as instructing the knapper to stay within particular parameters or to
copy a standard model (Eren et al. 2014b) or via comparisons of replicated and
archaeological specimens (Eren and Lycett 2012; Shott 2002). That said, the use
of blind testing is an important step forward, even if that means in some cases
and for some questions expert knappers can no longer participate in the experiments
they themselves designed (but see Nami 2010).
Replication experiments should always attempt to reach statistically valid sample

sizes. For example, although Eren, Greenspan, and Sampson’s (2008) experimental
study of blade-reduction efficiency versus discoidal-core-reduction efficiency
measured the cutting-edge length of thousands of specimens, the sample of core
reductions—the topic of investigation—was small: the actual statistical comparisons
encompassed only seven blade cores and seven discoidal cores. Of course, there are
always practical considerations, and as anyone who has conducted a
cutting-edge-efficiency experiment can attest, time is a major constraint. Jennings,
Pevny, and Dickens’ (2010) use of combined experimental datasets is one possible
and productive way forward. Collaboration among researchers is another way to
achieve valid sample sizes. Some stone-tool experiments require large samples not
in terms of specimens but of participants. We touch on this issue below.
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As we have discussed, inevitable tradeoffs involved in experimental design ensure
that no single experiment will strike a “perfect” balance between realism and
control, especially given inevitable financial and practical constraints typically
facing an experimenter. When blind testing or large sample sizes cannot be immedi-
ately achieved, independent re-testing may support an analysis. Thus, Clarkson’s
(2010) independent experimental confirmation of Eren, Greenspan, and Sampson’s
(2008) results provides the latter with empirical support despite the small sample
sizes and lack of blind testing. However, even when blind testing is conducted or
large sample sizes are used, independent testing and re-testing is desirable. We are
unsure as to why archaeologists are generally slow or reluctant to conduct indepen-
dent experimental re-tests, but there may be concerns over spending time on an
endeavor that is erroneously believed to not hold much prestige, or yield much
“credit,” in the eyes of the archaeological community, universities, or the
academy in general. Perhaps there is an erroneous perception that one experiment
has settled an issue. We also need more experiments that vary the experimental vari-
ables and parameters of published experiments. In terms of replication experiments
for method validation, we need to move away from the widespread belief that one or
two experiments validates a method, especially when experiments are not conducted
blind (e.g. Rots and Plisson 2014, 158).
Another challenge that faces stone-tool replication is the permanent curation of

replicated data sets. Whereas many current experiments are employing large
numbers of specimens (Figure 4), and space always seems to be in short supply,
archaeologists should nonetheless consider curating experimental materials. This
will allow other researchers not only to examine the work that has been done but
also to ask and answer new questions without having to create the data sets them-
selves. For these new questions, the curated experimentally replicated specimens
might in some cases even act as blind tests, given that the person who generated
the replicas might be unaware of the new study’s goals (Gurtov, Buchanan, and
Eren 2015). In cases where physical curation is impractical or impossible, 3D scan-
ning and printing may allow experimental specimens to be curated digitally.
The challenges described above may stem from the fact that, despite the great

strides made in recent years, experimental stone-tool replication is still in a state
of scientific immaturity relative to other experimental sciences (e.g. Bradbury and
Carr 2009, 2795). But these challenges are also in part due to more immediate, prac-
tical problems. It may be difficult for experimenters to get funding to pay for large
numbers of participants in blind-trials, much less large numbers of participants who
also happen to be highly skilled knappers, which is necessary if the topic of investi-
gation is something like Preferential (lineal) Levallois reduction, Clovis fluted
projectile-points, Danish Neolithic daggers, or Egyptian Gerzean knives. If they
can find the time away from teaching, administrative duties, conducting research,
and publishing, professional archaeologists and graduate students may very well
be happy to participate in their colleagues’ experiments for free, but unfortunately
there is a current dearth of professional archaeologists and archaeology students
who are also highly skilled flintknappers—becoming a skilled knapper requires a
tremendous dedication and financial investment. The hobby knapping community
might play an important role in this regard as potential test subjects, but we then
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again face the issue of funding—paying participants in blind trials for their time and
effort, as well as traveling to them or bringing them to our labs. And this of course
assumes one lives in the United States; other countries do not necessarily have thriv-
ing communities of skilled hobby knappers.

Conclusion

Because of ever-increasing use of structured research design, hypothesis testing,
quantitative methods, and inferential statistics, stone artifact replication is contri-
buting to our knowledge of prehistoric behavior at an unprecedented rate. Still,
those of us involved in replication experiments have our work cut out for us in
terms of catching up with more mature experimental sciences such as biology,
physics, or psychology. We say this because we see a tendency in archaeology to
ignore issues such as external and internal validity and to substitute intuition for
theoretically based hypotheses that clearly delineate independent and dependent
variables. Here we have emphasized that stone-tool replication can be used in
three productive ways: (1) to test a question, hypothesis, or assumption about
certain parameters of stone-tool technology; (2) as a model, in which information
from empirically documented situations, such as an experiment, is used to generate

figure 4 The dataset from Eren et al.’s (2014b) study “The role of raw material differences
in stone-tool shape variation: an experimental assessment.” While the initial published
study focused on the 105 finished tool replicas (some of which are pictured to the right),
all production flakes for each tool were weighed, numbered, carefully boxed, and saved
for future study.
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predictions; and (3) as a means of validating methods—for example, using exper-
imentally knapped tools to assess quantitative methods that will be used on archae-
ological specimens. We hope our modest effort will help sort out some of the
epistemological issues surrounding the use of replication experiments and spur the
growth of hypothesis-driven studies.
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Notes
1 It should be noted that the terms internal and exter-

nal validity were originally designed to be applied
solely to experiments, and Lycett and Eren’s
(2013; see also: Roe and Just 2009; Mesoudi
2011) application of them to discuss alternative
research methods inevitably involves some slight
manipulation of these terms as they were originally
conceived in the case of (solely) experiments.
Nevertheless, use of this terminology highlights
the contrasts in alternative strengths and weakness
of these different research methods, which is useful
in an inevitably historical science such as archaeol-
ogy where the past cannot be “replicated.”

2 The reader may be interested to note that some
initial insights of individual flake fracture were
first identified by Wilmsen (1970:67) over 40
years ago. Based on his analysis of North
American Paleoindian flake tools, he inferred
from his archaeological data “that striking plat-
form architecture is of fundamental importance
in predetermining at least some flake form charac-
teristics. Overall specimen size, although probably
related in part to raw material size, is also directly
related to platform size. Platform thickness is
apparently a strong determinant of specimen thick-
ness and width and, to a lesser extent, of specimen
length.” He later writes: “While it is probably not
true that a Paleo-Indian knapper could direct every
single flake to a specific size and shape, it appears
to be certain that s/he could regulate any series of
flakes to meet intended dimensional and formal
tolerances. S/he apparently did this by varying

the distance from the edge of a core at which he
applied detaching force…” He also investigates
platform width and flake angle (interior platform
angle), and speculates about force of blow.

3 In this regard, tool-making “exploration” by avo-
cational or hobby flintknappers may at times be
valuable to archaeological inquiry. E-forums for
knapping enthusiasts, like the paleoplanet prehis-
toric skills forum (http://paleoplanet69529.yuku
.com/), or YouTube videos (Eren et al. 2010b;
Shea 2015), reveal the use of many tools and pro-
cesses that have not received a lot of formal study
archaeologically, including punch work and use
of wooden billets. Discussions with avocational
knappers could potentially indicate where
further formal investigation might be fruitful
and may help identify new variables, attributes,
or behaviors to be investigated archaeologically,
or in controlled replication experiments via
human replication or machine/device flaking.

4 Many experimentally replicated analogue models
for lithic reduction sequences and production
behaviors are never actually compared – via eye-
balls or otherwise – to the archaeological data
they are purportedly interested in better under-
standing or explaining. These “orphan models”
could potentially serve as great source of graduate
student research and publication by quantitat-
ively comparing whether what was replicated
experimentally actually matches archaeological
data. Similarly, many taphonomy-focused exper-
iments using replicated stone tool test specimens
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serve merely as “cautionary tales” or “discoveries
of note” in that the data and patterns generated
by the experiment could be used as a potential
model against which archaeological data are com-
pared but are not, at least not immediately. For
example, in their experimental comparison of

stone-flake versus bamboo cutmark morphology,
West and Louys (2007) suggested that they found
differences that could possibly be identified
archaeologically. Yet, to our knowledge, no one
has compared West and Louys’ (2007) exper-
imentally derived model to archaeological data.
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