On the relevance of the European Neolithic

R. Alexander Bentley, Michael J. O’Brien, Katie Manning and Stephen Shennan

Antiquity / Volume 89 / Issue 347 / October 2015, pp 1203 - 1210
DOI: 10.15184/aqy.2015.98, Published online: 09 October 2015

Link to this article: http://journals.cambridge.org/abstract_S0003598X15000988

How to cite this article:

Request Permissions: Click here
On the relevance of the European Neolithic

R. Alexander Bentley¹, Michael J. O’Brien², Katie Manning³ & Stephen Shennan³

Sustainability, culture change, inequality and global health are among the much-discussed challenges of our time, and rightly so, given the drastic effects such variables can have on modern populations. Yet with many populations today living in tightly connected geographic communities—cities, for example—or in highly networked electronic communities, can we still learn anything about societal challenges by studying simple farming communities from many thousands of years ago? We think there is much to learn, be it Malthusian pressures and ancient societal collapse, the devastating effects of European diseases on indigenous New World populations or endemic violence in pre-state societies (e.g. Pinker 2012). By affording a simpler, ‘slow motion’ view of processes that are greatly accelerated in this century, the detailed, long-term record of the European Neolithic can offer insight into many of these fundamental issues. These include: human adaptations to environmental change (Palmer & Smith 2014), agro-pastoral innovation, human population dynamics, biological and cultural development, hereditary inequality, specialised occupations and private ownership.

Whether the Neolithic is considered part of the Anthropocene (Smith & Zeder 2013) or part of the ‘Palaeoanthropocene’ (Foley et al. 2013), it was the stage in which humans became active shapers of the Earth system. Archaeological evidence from multiple continents suggests that prehistoric land management may, until recently, have been vastly underestimated (e.g. Gartner 2001; Biege Bird et al. 2008; Heckenberger & Neves 2009). Ruddiman’s (2013) hypothesis—that increases in atmospheric carbon dioxide around 8000 years ago and methane about 5000 years ago were anthropogenic, caused by forest clearance, livestock pastoralism and early rice irrigation—can be more specifically tested using archaeological data (e.g. Fuller et al. 2011; Kaplan et al. 2011). In continental Europe, however, there is little evidence for intensified land clearance prior to the Bronze Age, about 3750 years ago (Bradshaw 2004; Berglund et al. 2008). This is because the small-scale intensive cultivation of the Linearbandkeramik (LBK) is effectively invisible in pollen diagrams (e.g. Bogaard 2014; Lechterbeck et al. 2014). In a Neolithic with a small population size and ephemeral environmental impact (Bogucki 1993; Zimmermann et al. 2009), “whole areas may indeed have been subject to only episodic and intermittent occupation for centuries if not millennia after the adoption of agriculture” (Scarre 2000: 828).

1 Department of Comparative Cultural Studies, University of Houston, 233 McElhinney Hall, Houston, TX 77204, USA (Email: rabentley@uh.edu)
2 Department of Anthropology, University of Missouri, Columbia, MO 65211, USA
3 Institute of Archaeology, University College London, London WC1H 0PY, UK

© Antiquity Publications Ltd, 2015
Even if the extent of Neolithic land clearance was not substantial everywhere (McMichael et al. 2012), debate concerning the modern Malthusian limits of the planet (Rockström et al. 2009; Barnosky et al. 2012; Ehrlich & Ehrlich 2013; Hughes et al. 2013) makes relevant study of prehistoric population growth. The occurrence of the Neolithic on multiple continents reveals how fertility rates vary over very long timescales in the kinds of small-scale subsistence communities that fundamentally inform the evolutionary study of modern fertility (Mace 2008; Bocquet-Appel 2011). For decades the view has been that agriculture initiated higher fertility in Neolithic Europe, effectively enabling steady population growth for all those subsequent millennia (Bocquet-Appel 2011). Although occurring at vastly different rates, both ancient and modern cereal domestication has increased yields, nutrition content and climatic resilience of domestic crops (Dayton 2014).

New evidence, however, indicates that Neolithic populations fluctuated through millennial-scale cycles of population growth and decline (Zimmermann et al. 2009; Shennan et al. 2013). In Britain and Ireland, pollen evidence suggests forest clearance by growing numbers of farmers from about 6000 years ago (Whitehouse et al. 2014; Woodbridge et al. 2014), followed by a decline in both population and human impact approximately 5500 years ago. It was not until late in the fifth millennium BP that population levels and associated land clearance were renewed. In continental Europe, the abundance of radiocarbon dates from the Neolithic—over 13 000—enable their use as a statistical proxy for population size through time, which demonstrates a recurrent pattern of population boom and bust following the introduction of farming into Europe (Shennan et al. 2013; Timpson et al. 2014). As more such finely resolved time-series data become available, abrupt changes may resolve themselves and we can perhaps determine if there were early warning signs in the lead up to these critical transitions (Scheffer et al. 2009).

Between cycles of population growth and decline (Shennan et al. 2013; Timpson et al. 2014), population bottlenecks will have had a considerable impact on the genetic and cultural diversity of subsequent growth periods, with strong selective pressures acting on populations. Nutrition, disease resistance, climatic adaptations and group alliances will have affected survival rates during these population bottlenecks. Although Neolithic farmers were shorter than Mesolithic hunter-gatherers, had bad teeth and suffered from farming-related diseases (Jackes et al. 1997; Holtby et al. 2012; Bickle & Fibiger 2014), the Neolithic still provided a selective advantage for those biologically evolved for adult lactose tolerance and carbohydrate digestion (Itan et al. 2009, 2010; Laland et al. 2010). If dairy farming constituted its own evolutionary niche in the European Neolithic (Laland et al. 2010; Gerbault et al. 2011; O’Brien & Laland 2012; O’Brien & Bentley in press), lactose-tolerant lineages may have emerged as an increased proportion of the population. As a result, the modern European digestive system is partly a legacy of Neolithic dairy farming and cereal production. These ancient origins may yield insight into the breakdown of the insulin-regulatory system that underlies modern diabetes and obesity.

Ownership of food production fundamentally changed in the Neolithic; this has contemporary relevance as the world debates who ‘owns’ new, genetically modified crops (Eisenstein 2014). While the landscape of Mesolithic Europe was probably communal for hunting and gathering (e.g. boar, aurochs, deer, eggs, fish, shellfish, hazelnuts, medicinal plants), Neolithic farmers cultivated their crops (wheat, barley, peas, flax, opium poppy) in

© Antiquity Publications Ltd, 2015
Debate

On the relevance of the European Neolithic

plots that were probably owned by specific households or lineages and intensively managed for long periods (Bogaard 2004; Lüning 2005; Bogaard et al. 2011). With the evolution of land ownership, the Neolithic was clearly a watershed phase in the origins of socio-economic inequality (Shennan 2011a; Pringle 2014). Although evidence for ascribed status among European Neolithic burials has been recognised for some time (e.g. Nieszery 1995; Jeunesse 1997), new evidence is accumulating for differential access to resources. Ownership of cattle is likely to have signified wealth or status, and owners of large dairy herds probably had a selective advantage over smaller owners or non-owners. Wealth was therefore another likely factor in Neolithic survival, and livestock wealth usually predicts better reproductive success in terms of surviving children (e.g. Holden & Mace 2003). Neolithic farmers also raised pigs, sheep and goats, but cattle produced valuable milk, as well as meat, hides and traction (Bogucki 1993; Vigne & Helmer 2007; Salque et al. 2013). If livestock herding was a hereditary specialisation (e.g. Bogucki 1993), as suggested by isotopic studies of Neolithic skeletons (Bentley et al. 2008), then this selective advantage would have favoured wealthy, lactose-tolerant, cattle-owning lineages for generations, especially during population bottlenecks.

This amounts to a theory of niche construction among Neolithic dairy farmers (Brock et al. in press), and even though testing this hypothesis requires more prehistoric data than currently exists, each year brings increasingly sophisticated lines of evidence from Neolithic contexts (e.g. Skoglund et al. 2012, 2014; Bollongino et al. 2013; Brandt et al. 2013, 2015; Lazaridis et al. 2014). Some of the most detailed source material comes from the Neolithic village of Vaihingen, Germany, where palaeobotanical evidence, combined with an extensive analysis of ceramic decoration, suggests that different family lineages had access to different portions of land for cultivation or stock keeping (Bogaard et al. 2011). Ceramic analysis across groupings of houses has led Strien (2010) to argue that different ‘clans’ and lineages within Vaihingen were signalled by decoration on pottery and by lineage-specific craft techniques and raw material sources. Bogaard et al. (2011) propose that certain groups had access to more local, and presumably valuable, resource patches, whereas others had to travel farther afield for their subsistence needs. This is consistent with isotopic evidence from LBK sites from eastern France to Austria, which suggests that males buried with polished stone adzes had access to more local resources than those without (Bentley et al. 2012).

The tendency for cattle ownership to co-occur with patrilineal kinship (Holden & Mace 2003) may also provide a framework for the archaeological, archaeogenetic and linguistic evidence favouring patriliney and livestock ownership in the European Neolithic (Bogucki 1993; Cavalli-Sforza 1997; Eisenhauer 2003; Bentley et al. 2008, 2012; Bogaard et al. 2011). Patriliney would have been conducive to the growth of hereditary inequality over time, as males endeavoured to retain resource access within their lineages. These patrilineages may have become specialised stock-keepers and cultivators (Bogucki 1993; Eisenhauer 2003; Vigne & Helmer 2007; Bentley et al. 2008). If women made pottery with lineage-dependent decorative styles learned from their mothers (Strien 2010), distinctive pottery design motifs may track the residential movement of women (Claßen 2009).

In terms of Neolithic society and technology, the relatively low-level, fluctuating populations may have resulted in founder effects (Shennan 2000). The related archaeological discussion of population size and cumulative culture (Henrich 2004; Powell et al. 2009;
Shennan (2011b; Bentley & O’Brien 2012) is echoed by a new economic theory that twenty-first century populations will lead new technologies, which are capable of keeping pace with environmental demands (Malakoff 2013). This, in turn, feeds back into the origins of inequality. Social memory, which was so resilient in Neolithic societies (Hodder & Cessford 2004), may leave legacies in modern populations, such as the suggestion that millennia of rice agriculture in China brought about more holistic and collective social norms than the wheat-intensive Neolithic of Europe (Talhelm et al. 2014), or that norms associated with the prehistory of plough-use continue to affect modern fertility (Alesina et al. 2011).

Insights into cooperation are demonstrated in how the exchange of foodstuffs mitigates the risk of seasonal uncertainty between different regional systems. If climate fluctuations undermined the stability of Neolithic societies (Gronenborn 2007), the disruption of exchange may have been as important as reduced productivity. These may provide important lessons for the twenty-first century regarding the effects of global warming on food supply (e.g. Battisti & Naylor 2009), the increased likelihood of warfare (Hsiang et al. 2013) or a reduction in labour capacity (Dunne et al. 2013).

More generally, the detailed regional diversity of the material and cultural data from Neolithic Europe—including burial practices, pottery decorations, stone tools, craft techniques and raw material sources (Modderman 1988; Lüning et al. 1989; Gronenborn 1999)—makes for an excellent testing ground of culture evolutionary process, including the neutral theory of ‘cultural drift’ (Shennan & Wilkinson 2001; Bentley & Shennan 2003), variations of which are now applied widely to contemporary phenomena, even Twitter (Gleeson et al. 2014). Similarly, concepts of cumulative culture, tested in the Neolithic and before, underlie theories of modern innovation and the combinatorial possibilities of technology (Hausmann & Hidalgo 2011).

Archaeology is increasingly playing a significant role in these debates as we begin to learn from the early agricultural societies where so many trends began. The role of people in changing global environments and climate has become an issue of massive concern. Human diets have never been subject to closer scrutiny, and the links between genetic patterns and subsistence practices are becoming ever clearer. The consequences of a human population that is heading towards ten billion members are unknown. Will a new equilibrium be reached, or will we see a repeat of the boom-and-bust patterns visible in prehistory but on a much larger scale because of the strength of global interconnections? Are we doomed to ever-greater inequality as a result of the increased concentration of resources in fewer hands? The continuing relevance of the Neolithic has never been more apparent.

References

http://dx.doi.org/10.1257/aer.101.3.499

http://dx.doi.org/10.1038/nature11018

© Antiquity Publications Ltd, 2015
On the relevance of the European Neolithic


© Antiquity Publications Ltd, 2015

1207


© Antiquity Publications Ltd, 2015
On the relevance of the European Neolithic


© Antiquity Publications Ltd, 2015


Received: 19 August 2014; Accepted: 17 November 2014; Revised: 16 December 2014

© Antiquity Publications Ltd, 2015